
Combinatorial Fourier transform for type A quiver representation varieties
Pramod N. Achar, Maitreyee Kulkarni, and Jacob P. Matherne

Louisiana State University, University of Massachusetts Amherst

Goal

Give a combinatorial description of the Fourier–Sato transform:
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Overview

Type A quiver
• → • → · · · → •

Dimension vector
w = (w1, . . . wn)

Quiver rep. variety E(w)
G(w)-orbits on E(w) Triangular arrays
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Quiver representations

A quiver representation is:
•A finite-dimensional C-vector
space for each vertex.

•A linear map for each arrow.
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A quiver representation variety E(w) is the space of all quiver
representations for a fixed dimension vector w.

G(w) = GL(w1)× . . .×GL(wn) acts on E(w) splitting it into orbits.

The set of triangular arrays P(w)

ladder

chute

Define the set P(w) of triangular arrays of
nonnegative integers such that:
•∀j, the entries in the jth chute sum to wj.
•Ladders are weakly decreasing.

Theorem [Achar–Kulkarni–M.]

There is a bijection
{G(w)-orbits in E(w)} 1−1←→ P(w) = {certain tri. arrays}.

Example of bijection
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Theorem (Combinatorial Fourier transform)
[Achar–Kulkarni–M.]

There is a bijection
P(w) T−→ P(w∗)

defined inductively by

yn,1 · · ·
y1,nT

Y ′ = τ
y1,n
n τ

y2,n−1−y1,n
n−1 · · · τ yn,1−yn−1,2

1

0 · · · 0
T(Y ′)

where T(a) = a.

Definition of τj

jth chute Define τj : P(w)→ P(w + e1 + . . . + ej) by:
•Add 1 as far down the jth chute as possible,
drawing an impassable vertical line there.

•Repeat for chutes j − 1, . . . , 1 not crossing lines.

Example of CFT
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Complete CFT example
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Main conjecture (proof in progress)

The bijection T determines T on simple perverse sheaves; that is,
T(IC(Oλ)) = IC(OT(λ)).


