Combinatorial Fourier transform for type A quiver representation varieties

Quiver representations

A quiver representation is:

where

- A finite-dimensional C-vector space for each vertex.
- A linear map for each arrow.

A quiver representation variety $E(\mathbf{w})$ is the space of all quiver representations for a fixed dimension vector \mathbf{w} .

 $G(\mathbf{w}) = \mathbf{GL}(w_1) \times \ldots \times \mathbf{GL}(w_n)$ acts on $E(\mathbf{w})$ splitting it into orbits.

Pramod N. Achar, Maitreyee Kulkarni, and Jacob P. Matherne Louisiana State University, University of Massachusetts Amherst

The set of triangular arrays P(w)

Theorem [Achar–Kulkarni–M.]

There is a bijection $\{G(\mathbf{w})\text{-orbits in } E(\mathbf{w})\} \xleftarrow{1-1} \mathbf{P}(\mathbf{w}) = \{\text{certain tri. arrays}\}.$

Example of bijection

Theorem (Combinatorial Fourier transform) [Achar–Kulkarni–M.]

- Define the set $\mathbf{P}(\mathbf{w})$ of triangular arrays of nonnegative integers such that:
- $\forall j$, the entries in the j^{th} chute sum to w_j . • Ladders are weakly decreasing.

Definition of τ_i

- Define $\tau_j : \mathbf{P}(\mathbf{w}) \to \mathbf{P}(\mathbf{w} + \mathbf{e}_1 + \ldots + \mathbf{e}_j)$ by:
- Add 1 as far down the j^{th} chute as possible, drawing an impassable vertical line there.
- Repeat for chutes $j 1, \ldots, 1$ not crossing lines.

Example of CFT

 $\mathbb{T}(\mathrm{IC}(\mathcal{O}_{\lambda})) = \mathrm{IC}(\mathcal{O}_{\mathsf{T}(\lambda)}).$

Complete CFT example

Main conjecture (proof in progress) The bijection T determines T on simple perverse sheaves; that is,