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Abstract. We introduce a class of posets, called mobile posets, which includes both
ribbon posets and d-complete posets, whose number of linear extensions is given by
a determinant of a matrix where entries are products of hook lengths. We also give
q-analogs of this determinantal formula in terms of the inversion statistic.

Résumé. Nous introduisons une classe d’ensembles partiellement ordonnés, appelés
ensembles mobiles partiellement ordonnés, qui comprend à la fois des ensembles par-
tiellement ordonnés en ruban et des ensembles partiellement ordonnés complets d,
dont le nombre d’extensions linéaires est donné par un déterminant d’une matrice où
les entrées sont des produits de longueurs de crochet. Nous donnons également des
q-analogues de cette formule déterminante en termes de statistique d’inversion.
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1 Introduction

Linear extensions of posets are fundamental objects in combinatorics and computer sci-
ence. The number of linear extensions of a poset P , denoted by e(P), is a measure of
the complexity of the poset. However, computing e(P) is a difficult problem—it is #P-
complete [4], even for posets with restricted height or dimension [5]. Fortunately, for
some posets that appear in algebraic and enumerative combinatorics, their number of
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Figure 1: Left: schematic of a mobile poset. Right: schematic of a mobile tree poset.
The shaded rhombi depict d-complete posets, and the shaded triangles depict rooted
tree posets.

linear extensions can be efficiently computed through product formulas (posets arising
from Young diagrams [6], rooted tree posets [8], d-complete posets [12]), determinants
(posets arising from skew Young diagrams [1]), or recursive algorithms (tree posets [2]).

The main result of this paper is to give a determinantal formula for the number
of linear extensions of mobile posets, a class of posets which includes both ribbons and
d-complete posets. A mobile poset1 P is a poset obtained from a ribbon poset Z by
allowing every element z in Z to cover the maximal element of a nonnegative number
of disjoint d-complete posets, and by letting at most one element z′ of Z be covered by a
certain element of a d-complete poset (see Figure 1: Left). If the d-complete posets in this
description are restricted to rooted tree posets, then the posets in the resulting family
are called mobile tree posets (see Figure 1: Right).

In Section 2, we review basic poset definitions including MacMahon’s enumeration of
the linear extensions of a ribbon poset. Section 3 presents the technique of folding posets
which allows one to use inclusion-exclusion to enumerate linear extensions. Section 4
reviews the basics of d-complete posets and their hook length formulas. In Section 5,
we introduce the component tree of a poset, which allows us to state our main theorem
for mobile posets (Theorem 6.4) in Section 6. Lastly, we present a q-analog of our main
theorem (Theorem 7.3) for the case of mobile tree posets, using inversions. In the full
version of our paper [7], we present an additional q-analog, which uses major index.

2 Preliminaries

A partially-ordered set (poset) is a pair (P ,≤P ), with P a finite set and ≤P a binary
relation on P that is reflexive, antisymmetric, and transitive. We denote a poset by its
underlying set when the order relation is clear from context. Throughout, we view ≤P as

1The name “mobile” was chosen for the poset’s resemblance to mobiles for babies and to the kinetic
sculptures of Alexander Calder.
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both a subset of P2 and as a way to compare two elements of P , depending on context.
(Thus, writing (x, y) ∈ ≤P is equivalent to writing x ≤P y.) We denote the set of cover
relations of P by lP . An (induced) subposet Q of P is a poset whose underlying set is a
subset of the elements of P , and whose relations are given by s ≤Q t if and only if s ≤P t.
Given two elements x, y ∈ P , the interval [x, y] is the subposet {z ∈ P | x ≤P z ≤P y}.

If P and Q are two posets, we define their disjoint sum P + Q as the poset with
underlying set the disjoint union P tQ and with relations the disjoint union ≤P t ≤Q.
If E ⊂ P , we denote by P \ E the poset with underlying set P \ E and with relations
≤P\E := ≤P \ {(x, y) ∈ ≤P | x ∈ E or y ∈ E}. Given a poset P with two incomparable
elements x and y, let P ⊕ {(x, y)} be the poset obtained by adding the cover relation
(x, y) and taking the transitive closure.

Definition 2.1. Let P ,Q1, . . . ,Qm be disjoint posets, let p be an element in P , and let qi be an
element in Qi for i = 1, . . . , m. The slant sum of P ,Q1, . . . ,Qm at p and q1, . . . , qm is the poset

P p∖
qi

i=1,...,m

Qi := (P +Q1 + · · ·+Qm)⊕ {(q1, p), . . . , (qm, p)}.

The slant sum operation above is associative with fixed p, so this construction does not depend
on the order in which we add the posets Qi to P .

We now introduce the main object of study in this paper: linear extensions of posets.

Definition 2.2. A linear extension of an n-element poset P is a bijection f : P → [n] that is
order-preserving; that is, if x ≤P y, then f (x) ≤ f (y). We denote by L (P) the set of all linear
extensions of P and by e(P) := #L (P) the number of linear extensions of P .

An important class of posets to which our theory applies is the class of ribbon posets.
Let S = {s1, . . . , sk} ⊂ [n− 1] with s1 < · · · < sk. A ribbon poset Z with descent set S
is the poset with underlying set {z1, . . . , zn} whose cover relations are zi+1 l zi if i ∈ S
and zi l zi+1 if i 6∈ S. The following classical theorem gives a determinant formula for
the linear extensions of ribbon posets.

Theorem 2.3 (MacMahon [9, vol. I, p.190]). The number of linear extensions of a ribbon poset
Z with n elements and descent set S ⊂ [n− 1] is given by

e(Z) = n! · det

(
1

(sj+1 − si)!

)
0≤i,j≤k

, (2.1)

where s0 = 0 and sk+1 = n.
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Figure 2: Examples of a fold of P and partial folds where F = {(c, e), (d, g)}, S1 =

{(c, e)}, and S2 = {(d, g)}.

3 Folding and an alternating formula for linear extensions

We begin with a simple inclusion-exclusion formula for e(P).

Definition 3.1. Let P be a poset, F ⊂ lP , and Fop := {(y, x) ∈ P2 | (x, y) ∈ F}. We write
P 	 F for the poset with the same underlying set as P , but with cover relations lP\F := lP\ F.
We call a fold of P at F the poset

PF := (P 	 F)⊕ Fop

obtained by deleting the cover relations in F, adding the opposite cover relations, and taking the
transitive closure. If S ⊂ F, then we call a partial fold of P at S the poset

PS,F := (P 	 F)⊕ Sop.

Example 3.2. Consider the seven element poset P in the left of Figure 2. Let F = {(c, e), (d, g)},
S1 = {(c, e)}, and S2 = {(d, g)}. The posets P∅,F, PS1,F, PS2,F, and PF are also depicted in
Figure 2.

The next lemma describes how the number of linear extensions of a poset changes
when folding at a single cover relation.

Lemma 3.3. Let P be a poset and (x, y) be in lP . Then

L (P) = L (P 	 {(x, y)}) \ L (P{(x,y)}). (3.1)

In particular, we have that

e(P) = e(P 	 {(x, y)})− e(P{(x,y)}).

Example 3.4. Consider the seven element poset P in Figure 3: Left. Choosing either the cover
relation (c, e) or (a, c), we obtain

77 = e(P) = e(P 	 {(c, e)})− e(P{(c,e)}) = 105− 28, (3.2a)

= e(P 	 {(a, c)})− e(P{(a,c)}) = 117− 40. (3.2b)
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Figure 3: Example of using the inclusion-exclusion formula from Lemma 3.3 to calcu-
late e(P).

e( ) = e( ) − e( ) e( )− e( )+

Figure 4: An example of the linear extension formula from (3.3).

See the right image in Figure 3 for an illustration of these inclusion-exclusion formulas. As a
further illustration of (3.2a), consider the following linear extension η ∈ L (P):

a 7→ 1, b 7→ 2, c 7→ 3, d 7→ 4, e 7→ 5, f 7→ 6, g 7→ 7.

Notice that η ∈ L (P 	 {(c, e)}) and η 6∈ L (P{(c,e)}), since η(c) < η(e).

The next result follows from repeatedly applying Lemma 3.3.

Corollary 3.5. Let P be a poset, and let F ⊂ lP . Then

e(P) = ∑
S⊂F

(−1)#Se(PS,F). (3.3)

Example 3.6. For the poset P from Example 3.4, Corollary 3.5 yields the formula shown in
Figure 4 when F = {(c, e), (d, g)} is the set of cover relations depicted in red on the left-hand
side of the above equation.

4 d-complete posets

The class of d-complete posets is an important family of posets whose linear extensions
we will enumerate. Defined by Proctor in [11], d-complete posets form a large class of
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posets containing rooted tree posets and posets arising from Young diagrams,2 while
still retaining a hook-length formula for their number of linear extensions. We recall
their definition below (see Definition 4.1).

A poset P has a diamond if there are four elements w, x, y, z in P such that z covers
x and y, while x and y cover w. For k ≥ 3, a double-tailed diamond poset dk is a poset
obtained by adding a k − 3 chain to the top and bottom of a diamond (w, x, y, z). The
neck elements are the k− 2 elements above the two incomparable elements x and y. A
dk-interval is an interval [u, v] which is isomorphic to dk.

A subset S of P is convex if for any x, y ∈ S and any z ∈ P satisfying x ≤ z ≤ y, one
has that z ∈ S. For k ≥ 3, a d−k -convex set is a convex set of P that is isomorphic to a
dk-interval with the maximal element removed. Note that for k ≥ 4, a d−k -convex set is
an interval.

Definition 4.1 ([11]). A poset P is d-complete if, for any k ≥ 3, the following properties are
satisfied:

1. If I is a d−k -convex set, then there exists an element p in P that covers the maximal elements
of I.

2. If [w, z] is a dk-interval, then z does not cover any elements of P outside [w, z].

3. There are no d−k -convex sets which differ only in their minimal elements.

A connected d-complete poset has a unique maximal element [10, Section 14]. Given
a connected d-complete poset P , its top tree Γ is the (induced) subgraph of the Hasse
diagram of P consisting of vertices x in P such that y ≥P x is covered by at most one
other element. (This subgraph is indeed a tree.) An element y of P is acyclic if y ∈ Γ and
is not part of the neck of any dk-interval of P . Note that if P is a rooted tree, then Γ = P
and all its elements are acyclic.

Slant sums (see Definition 2.1) can be used to combine two d-complete posets to
obtain a larger d-complete poset.

Proposition 4.2 (Proctor [10, Proposition B]). Let P1 be a connected d-complete poset with
an acyclic element y, and let P2 be a connected d-complete poset with maximal element x. Then
the slant sum P := P1

y\xP2 is a d-complete poset, and the acyclic elements of P1 and P2 are
acyclic elements of P .

Next, we recall the hook-length formula for the number of linear extensions of a
d-complete poset.

Definition 4.3 ([11]). The hook length hP (z) of an element z in a d-complete poset P is defined
as follows:

2See [10, Table 1] for a complete classification of d-complete posets.
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1. If z is not in the neck of any dk-interval, then hP (z) = #{y | y ≤P z}.

2. If z is in the neck of a dk-interval, then we can find some element w such that [w, z] is a
d`-interval for some `. If x and y are the two incomparable elements in the d`-interval, then
hP (z) = hP (x) + hP (y)− hP (w).

Theorem 4.4 (Peterson–Proctor [12]). The number of linear extensions of a d-complete poset
P with n elements is

e(P) = n!
∏x∈P hP (x)

,

where hP (x) is the hook length of x in P from Definition 4.3.

5 Component trees and component arrays

For the rest of the paper, we assume that P is connected. However, our results can easily
be adapted to the case where P is a disconnected poset.

Definition 5.1. We define the component tree of PF, where F ⊂ lP , to be the tree C(PF)
with vertices {σ0, . . . , σk} the connected components of the poset P 	 F and edges {σx, σy} for
all (x, y) ∈ F, where x ∈ σx and y ∈ σy. That C(PF) is a tree follows from the fact that none of
the cover relations in F lie in an undirected cycle in the Hasse diagram of P .

Definition 5.2. Suppose #F = k and σ = (σ0, σ1, . . . , σk) is a total order on the vertices of
C(PF). The component array Mσ(PF) is the triangular array of posets

(Mσ(PF))i,j := C(PF)[i, j],

where 0 ≤ i ≤ j ≤ k and C(PF)[i, j] is the subposet of PF on the elements in the connected
components σi, σi+1, . . . , σj of P 	 F. We say σ is a path order if each entry of the component
array Mσ(PF) is a connected poset.

Example 5.3. For the poset P and folds F from Example 3.6, Figure 5 depicts the component
tree and component arrays for a path order σ = (σ0, σ1, σ2) and an order τ = (σ1, σ0, σ2) that is
not a path order.

Proposition 5.4. There is a path order σ on the vertices of C(PF) if and only if C(PF) is a path.

6 Determinant formulas for linear extensions

In this section, we present our main theorem. This theorem gives a determinantal for-
mula for the linear extensions of mobile posets. The definition of the latter appears
below.
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Figure 5: Left: example of component tree C(PF) with a chosen total order σ =

(σ0, σ1, σ2) on the vertices. Center: example of component array Mσ(PF). Right: an-
other example of a component array Mτ(PF) with a different order τ = (σ1, σ0, σ2).

Definition 6.1. A (connected) mobile poset P is a poset obtained from a ribbon Z by the
following two operations:

(i) For every element z ∈ Z , perform a slant sum Z z∖
ri

i=1,...,mz

R(i)
z with mz ≥ 0 connected

d-complete posets R(i)
z with respective maximal elements ri. Denote the resulting poset by

P ′.

(ii) For at most one element z′ ∈ Z , perform a slant sum Qz′
q\z′ P ′ where Qz′ is a connected

d-complete poset and q is one of its acyclic elements. Such an element z′ is called an anchor.

If no such element z′ ∈ Z is used in Operation (ii), we say that the mobile is free-standing with
respect to the ribbon Z . If each poset attached to Z as above is a rooted tree, we say that P is
a mobile tree poset. Additionally, we say that a mobile poset P is free-standing if there exists
a ribbon Z with respect to which P is free-standing.

See the left image in Figure 1 for a schematic of a mobile poset.

Example 6.2. Figure 6 shows four examples: a free-standing mobile, a mobile, and two posets
that cannot be expressed as mobiles.

To state Theorem 6.4, we identify special types of folds to apply to a mobile poset P
called path folds.

Definition 6.3. Let P be a mobile poset with a ribbon Z with descents S. The set of path folds
for P (with respect to Z) is defined as

F =

{
{(zi+1, zi) | i ∈ S} if P is free-standing,
{(zi+1, zi) | i ∈ S, i < j} ∪ {(zi, zi+1) | i 6∈ S, i ≥ j} otherwise,

(6.1)
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(a) (b) (c) (d)

Figure 6: Examples of (a) a free-standing mobile poset, (b) a mobile poset, and (c) and
(d) posets that are not mobile posets.

where j is the index of the anchor z′ = zj covered by an acyclic element of a connected d-complete
poset Qz′ (see Definition 6.1 (ii)).

Theorem 6.4. Let P be a mobile poset with n elements, F the set of path folds for P , and σ a
path order that is compatible with F. Then

e(P) = n! · det(Mi,j)0≤i,j≤k, for Mi,j :=


0 if j < i− 1,
1 if j = i− 1,
1/ ∏x∈Pi,j

hPi,j(x) otherwise,
(6.2)

where k is the size of F and Pi,j is the connected d-complete poset (Mσ(PF))i,j.

Example 6.5. Consider the mobile poset P and set F = {(e, b), ( f , d)} of path folds pictured
in Figure 7: Left. The component tree C(PF) and the component array Mσ(PF) are pictured in
Figure 7: Center, Right. Applying Theorem 6.4 to P gives the determinantal formula

e(P) = 10! · det


1
1

1
9·8·5·3·2·2·2

1
10·9·6·3·2·2·2

1 1
8·7·5·3·2·2

1
9·8·6·3·2·2

0 1 1
1

 = 240.

7 Determinant formulas for q-analogs of linear extensions

A labeled poset (P , ω) is a poset P with n elements, together with a bijection ω : P → [n].
A labeling ω is regular if we have the following: for all x <P z and y ∈ P , if ω(x) <
ω(y) < ω(z) or ω(x) > ω(y) > ω(z) then x <P y or y <P z. For more on regular
labelings, we refer the reader to [3]. Additionally, we define inv(P , ω) to be the number
of inversions of (P , ω): pairs (x, y) with ω(x) > ω(y) and x <P y.

Definition 7.1. Let (P , ω) be a labeled poset. If f : P → [n] is a linear extension of P , then the
permutation ω ◦ f−1 ∈ Sn is called a linear extension of the labeled poset (P , ω). We write
L (P , ω) for the set of all linear extensions of (P , ω).
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Figure 7: Left: a mobile poset P with folds highlighted. Center: its component tree
C(PF), with path order σ = (σ0, σ1, σ2). Right: its component array Mσ(PF).

By restricting to the class of mobile tree posets P , we identify a distinguished labeling
of P defined below. With this labeling, we state our final result.

Definition 7.2. Let P be a mobile tree poset, F the set of path folds for P and σ a path order
compatible with F. Then σ gives an order Pσ0 ,Pσ1 , . . . ,Pσk on the connected components of the
poset P 	 F. A labeling ω on P is called a σ-partitioned labeling if whenever σi < σj, we have

ω(x) < ω(y) for every x ∈ Pσi , y ∈ Pσj .

Moreover, ω is called a σ-partitioned regular labeling if it is a σ-partitioned labeling such
that the restriction of ω to each connected component Pσi of P 	 F is a regular labeling of that
component.

Theorem 7.3. Let (P , ω) be a labeled mobile tree poset with n elements, F the set of path folds
for P , σ a path order compatible with F, and ω a σ-partitioned regular labeling of P . Then

einv
q (P , ω) = [n]q! · det(Mi,j)0≤i,j≤k, for Mi,j :=


0 if j < i− 1,
1 if j = i− 1,

qinv(Pi,j ,ωi,j)

∏x∈Pi,j
[hPi,j

(x)]q
otherwise,

(7.1)

where k is the size of F and (Pi,j, ωi,j) is the labeled rooted tree poset (Mσ(PF, ω))i,j.

Example 7.4. Let P be the mobile tree poset in Figure 8 with σ-partitioned regular labeling ω

given by a 7→ 1, b 7→ 3, c 7→ 6, d 7→ 4, e 7→ 2, and f 7→ 5. Applying Theorem 7.3 to (P , ω)
yields

einv
q (P , ω) = [6]q! · det


1
[1]q

q3

[5]q[4]q
q5

[6]q[5]q

1 q3

[4]q[3]q
q5

[5]q[4]q

0 1 1
[1]q

 = q10 + 3q9 + 4q8 + 3q7 + q6.
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Figure 8: Left: a mobile tree poset P with folds highlighted. Center: its component
tree C(PF), with path order σ = (σ0, σ1, σ2). Right: its component array Mσ(PF).
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