COMBINATORICS OF EXCEPTIONAL SEQUENCES IN TYPE A
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ABSTRACT. Exceptional sequences are certain ordered sequences of quiver representations. We introduce a class of
objects called strand diagrams and use this model to classify exceptional sequences of representations of a quiver
whose underlying graph is a type A, Dynkin diagram. We also use variations of this model to classify c-matrices
of such quivers, to interpret exceptional sequences as linear extensions of posets, and to give a simple bijection
between exceptional sequences and certain chains in the lattice of noncrossing partitions. This work extends a
classification of exceptional sequences for the linearly-ordered quiver obtained in [GM15] by the first and third
authors.

CONTENTS
1. Introduction 1
2. Preliminaries 2
2.1.  Quiver mutation 3
2.2. Representations of quivers 3
2.3.  Quivers of type A, 4
3. Strand diagrams 5
3.1. Exceptional sequences and strand diagrams )
3.2. Proof of Lemma 3.5 8
4. Mixed cobinary trees 13
5. Exceptional sequences and linear extensions 15
6. Applications 18
6.1. Labeled trees 18
6.2. Reddening sequences 18
6.3. Noncrossing partitions and exceptional sequences 19
References 20

1. INTRODUCTION

Exceptional sequences are certain sequences of quiver representations with strong homological properties.
They were introduced in [GR87] to study exceptional vector bundles on P2, and more recently, Crawley-Boevey
showed that the braid group acts transitively on the set of complete exceptional sequences (exceptional sequences
of maximal length) [CB93]. This result was generalized to hereditary Artin algebras by Ringel [Rin94]. Since that
time, Meltzer has also studied exceptional sequences for weighted projective lines [Mel04], and Araya for Cohen-
Macaulay modules over one dimensional graded Gorenstein rings with a simple singularity [Ara99]. Exceptional
sequences have been shown to be related to many other areas of mathematics since their invention:

e chains in the lattice of noncrossing partitions [Bes03, HK13, IT09],
e c-matrices and cluster algebras [ST13],

e factorizations of Coxeter elements [IS10], and

e t-structures and derived categories [Bez03, BK89, Rud90].

Despite their ubiquity, very little work has been done to concretely describe exceptional sequences, even for
path algebras of Dynkin quivers [Aral3, GM15]. In this paper, we give a concrete description of exceptional
sequences for type A, quivers of any orientation. This work extends a classification of exceptional sequences for
the linearly-ordered quiver obtained in [GM15] by the first and third authors.

The first author was supported by a Research Training Group, RTG grant DMS-1148634.
The second author was supported by National Security Agency Grant H98230-13-1-0247.
The third author was supported by a Graduate Assistance in Areas of National Need fellowship, GAANN grant P200A120001.
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Exceptional sequences are composed of indecomposable representations which have a particularly nice de-
scription. For a quiver @ of type A,,, the indecomposable representations are completely determined by their
dimension vectors, which are of the form (0,...,0,1,...,1,0,...,0). Let us denote such a representation by X5
where € is a vector that keeps track of the orientation of the quiver, and ¢ + 1 and j are the positions where the
string of 1’s begins and ends, respectively.

This simple description allows us to view exceptional sequences as combinatorial objects. Define a map ®.

which associates to each indecomposable representation X7 ; a strand ®.(X; ;) on a collection of n + 1 dots.

Xoo k=0 /AR

FIGURE 1. An example of the indecomposable representation X§; on a type Az quiver and the
corresponding strand ®.(X¢ ;)

As exceptional sequences are collections of representations, the map ®. allows one to regard them as collections of
strands. The following lemma is the foundation for all of our results in this paper (it characterizes the homological
data encoded by a pair of strands and thus by a pair of representations). Since exceptional sequences are sequences
of representations, each pair of which satisfy certain homological properties, Lemma 3.5 allows us to completely
classify exceptional sequences using strand diagrams.

Lemma 3.5. Let Q. be given. Fix two distinct indecomposable representations U, V' € ind(repy (Q.)).
a) The strands ®.(U) and ®.(V') intersect nontrivially if and only if neither (U, V) nor (V,U) are
exceptional pairs.
b) The strand ®.(U) is clockwise from ®.(V) if and only if (U, V) is an exceptional pair and (V,U)
is not an exceptional pair.
¢) The strands ®.(U) and ®.(V) do not intersect at any of their endpoints and they do not intersect
nontrivially if and only if (U, V) and (V,U) are both exceptional pairs.

The paper is organized in the following way. In Section 2, we give the preliminaries on quivers and their
representations which are needed for the rest of the paper.

In Section 3.1, we decorate our strand diagrams with strand-labelings and oriented edges so that they can
keep track of both the ordering of the representations in a complete exceptional sequence as well as the signs
of the rows in the c-matrix it came from. While unlabeled diagrams classify complete exceptional collections
(Theorem 3.6), we show that the new decorated diagrams classify more complicated objects called exceptional
sequences (Theorem 3.9). Although Lemma 3.5 is the main tool that allows us to obtain these results, we delay
its proof to Section 3.2.

The work of Speyer and Thomas (see [ST13]) allows complete exceptional sequences to be obtained from
c-matrices. In [ONAT13], the number of complete exceptional sequences in type A, is given, and there are
more of these than there are c-matrices. Thus, it is natural to ask exactly which c-matrices appear as strand
diagrams. By establishing a bijection between the mixed cobinary trees of Igusa and Ostroff [I013] and a certain
subcollection of strand diagrams, we give an answer to this question in Section 4.

In Section 5, we ask how many complete exceptional sequences can be formed using the representations in a
complete exceptional collection. It turns out that two complete exceptional sequences can be formed in this way
if they have the same underlying chord diagram without chord labels. We interpret this number as the number
of linear extensions of the poset determined by the chord diagram of the complete exceptional collection. This
also gives an interpretation of complete exceptional sequences as linear extensions.

In Section 6, we give several applications of the theory in type A, including combinatorial proofs that two
reddening sequences produce isomorphic ice quivers (see [Kell2] for a general proof in all types using deep
category-theoretic techniques) and that there is a bijection between exceptional sequences and certain chains in
the lattice of noncrossing partitions.

Acknowledgements. A. Garver and J.P. Matherne gained helpful insight through conversations with E.
Barnard, J. Geiger, M. Kulkarni, G. Muller, G. Musiker, D. Rupel, D. Speyer, and G. Todorov. A. Garver and
J.P. Matherne also thank the 2014 Mathematics Research Communities program for giving us an opportunity to
work on this exciting problem as well as for giving us a stimulating (and beautiful) place to work.

2. PRELIMINARIES

In this section, we recall some basic definitions. We will be interested in the connection of exceptional
sequences and the c-matrices of an acyclic quiver () so we begin by defining these. After that we review the basic
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terminology of quiver representations and exceptional sequences. which serve as the starting point in our study
of exceptional sequences. We conclude this section by explaining the notation we will use to discuss exceptional
representations of quivers that are orientations of a type A, Dynkin diagram.

2.1. Quiver mutation. A quiver @ is a directed graph without loops or 2-cycles. In other words, @ is a 4-tuple
(Qo, Q1,s,t), where Qg = [m] := {1,2,...,m} is a set of vertices, Q; is a set of arrows, and two functions
5,t: Q1 — Qo defined so that for every a € Qi, we have s(a) - t(a). An ice quiver is a pair (Q,F) with
Q a quiver and F' c Q) frozen vertices with the additional restriction that any i,j € F' have no arrows of )
connecting them. We refer to the elements of Qo\F as mutable vertices. By convention, we assume Qo\F = [n]
and F = [n+1,m] :={n+1,n+2,...,m}. Any quiver @) can be regarded as an ice quiver by setting Q = (Q, &).

The mutation of an ice quiver (Q, F') at mutable vertex &, denoted iy, produces a new ice quiver (up@, F)
by the three step process:

(1) For every 2-path ¢ — k — j in @, adjoin a new arrow i — j.

(2) Reverse the direction of all arrows incident to & in Q.

(3) Delete any 2-cycles created during the first two steps.
We show an example of mutation below depicting the mutable (resp. frozen) vertices in black (resp. blue).

2 2
(Q.F) = ﬂ >3 2 \3 = (12Q, F)

1 4
The information of an ice quiver can be equivalently described by its (skew-symmetric) exchange matrix.
Given (Q, F), we define B = B(q ) = (bi;) € Z"™*™ := {nxm integer matrices} by b;; := #{i > j € Q1} —#{j >
i € Q1}. Furthermore, ice quiver mutation can equivalently be defined as matrix mutation of the corresponding

exchange matrix. Given an exchange matrix B € Z"*™, the mutation of B at k € [n], also denoted uy, produces
a new exchange matrix px(B) = (b};) with entries

b —b;j c ifi=korj=k
ij bij + MLW :  otherwise.

For example, the mutation of the ice quiver above (here m = 4 and n = 3) translates into the following matrix
mutation. Note that mutation of matrices (or of ice quivers) is an involution (i.e. pxux(B) = B).

0 2 0| 0 0 -2 2] 0
M2
B = —02 01 (1) (1) — 22 (1) —01 (1) = Bueqr):

Given a quiver @, we define its framed (resp. coframed) quiver to be the ice quiver @ (resp. Cj) where
Qo (= C,jo) =Qou[n+1,2n], F =[n+1,2n], and Q1:= Q1 u{i >n+i:ie[n]} (resp. Q1= Q1 uf{n+i—
i:i€[n]}). Now given @ we define the exchange tree of @, denoted ET(@), to be the (a priori infinite) graph
whose vertices are quivers obtained from @ by a finite sequence of mutations and with two vertices connected by
an edge if and only if the corresponding quivers are obtained from each other by a single mutation. Similarly,
define the exchange graph of CAQ, denoted EG (C’?)7 to be the quotient of ET (@) where two vertices are identified
if and only if there is a frozen isomorphism of the corresponding quivers (i.e. an isomorphism that fixes the
frozen vertices). Such an isomorphism is equivalent to a simultaneous permutation of the rows and columns of
the corresponding exchange matrices.

Given Q, we define the c-matrix C(n) = Cr(n) (resp. C = Cg) of R € ET(@) (resp. R € EG(@)) to
be the submatrix of Br where C(n) := (bij)ie[n],je[n+1,2n] (xe8P- C := (bij)icn],je[n+1,2n])- We let c-mat(Q)
:= {Cr : R € EG(Q)}. By definition, By (resp. C) is only defined up to simultaneous permutations of its rows
and first n columns (resp. up to permutations of its rows) for any R € EG(Q).

A row vector of a c-matrix, @, is known as a c-vector. The celebrated theorem of Derksen, Weyman, and
Zelevinsky [DWZ10, Theorem 1.7], known as the sign-coherence of c-vectors, states that for any R € ET(@) and
i € [n] the c-vector ¢ is a nonzero element of ZZ or ZZ. Thus we say a c-vector is either positive or negative.

2.2. Representations of quivers. A representation V = ((V;)ieqQ,, (¢a)ac,) of a quiver @) is an assignment

of a k-vector space V; to each vertex i and a k-linear map ¢, : Vi) — Vi) to each arrow a where k is

a field. The dimension vector of V is the vector dim(V) := (dimV;);eq,- The support of V is the set
3



supp(V) := {i € Qo : V; # 0}. Here is an example of a representation, with dim(V') = (3, 3,2), of the mutable
part of the quiver depicted in Section 2.1.

?} K3 [ 3 12 4]
0 Y 10
K

Let V = ((Vi)ieQos (Pa)acq,) and W = (W;)ieqy (0a)acq,) be two representations of a quiver ). A morphism
0 : V. — W consists of a collection of linear maps 6; : V; — W, that are compatible with each of the linear
maps in V' and W. That is, for each arrow a € Q1, we have 0y,) © 9a = 04 © 05(4)- An isomorphism of
quiver representations is a morphism 6 : V. — W where 6, is a k-vector space isomorphism for all i € Qg. We
define VAW = (Vi ® Wi)icgys (Pa @ 0a)ac,) to be the direct sum of V and W. We say that a nonzero
representation V' is indecomposable if it is not isomorphic to a direct sum of two nonzero representations. Note
that representations of quivers along with morphisms between them form an abelian category denoted rep (Q),
with the indecomposable representations forming a full subcategory called ind(repy(Q)).

We remark that representations of @ can equivalently be regarded as modules over the path algebra k@. As
such, one can define Extio (V, W) (s = 0) and Homygq(V, W) for any representations V and W and Homyq (V, W)
is isomorphic to the vector space of all morphisms 6 : V. — W. We refer the reader to [ASS06] for more details
on representations of quivers.

An exceptional sequence & = (Vi,..., Vi) (k < n:= #Qp) is an ordered list of exceptional representa-
tions V; of @ (i.e. V; is indecomposable and Extiq(V;,V)) = 0 for all s > 1) satisfying Homyq(V}, Vi) = 0 and
Extio(V;,Vi) = 0if i < j for all s > 1. We define an exceptional collection £ = {V4,...,Vi} to be a set of
exceptional representations V; of @) that can be ordered in such a way that they define an exceptional sequence.
When k = n, we say ¢ (resp. £) is a complete exceptional sequence (CES) (resp. complete exceptional
collection (CEC)). For Dynkin quivers, a representation is exceptional if and only if it is indecomposable.

The following result of Speyer and Thomas gives a beautiful connection between c-matrices of an acyclic quiver
@ and CESs. It serves as motivation for our work. Before stating it we remark that for any R € ET(@) and any
i € [n] where @ is an acyclic quiver, the c-vector ¢; = ¢; (R) = +dim(V;) for some exceptional representation of
Q@ (see [Chal2]). In general, not all indecomposable representations are exceptional. The c-vectors are exactly
the dimension vectors of the exceptional modules and their negatives.

1
1
0

Notation 2.1. Let @ be a c-vector of an acyclic quiver ). Define
< if @ is positive
o -7 : if @ is negative.

Theorem 2.2 ([ST13]). Let C € c-mat(Q), let {7 }ic[,) denote the c-vectors of C, and let |¢7| = dim(V;) for
some indecomposable representation of Q. There exists a permutation o € &,, such that (V, (1), ..., Vo(n)) is a CES
with the property that if there exist positive c-vectors in C, then there exists k € [n] such that ¢, is positive if
and only if ¢ € [k, n], and Homyg(V;,V;) = 0if G, €} have the same sign. Conversely, any set of n vectors having
these properties defines a c-matrix whose rows are {¢; }ic[n]-

2.3. Quivers of type A,,. For the purposes of this paper, we will only be concerned with quivers of type A,.
We say a quiver @ is of type A, if the underlying graph of @ is a Dynkin diagram of type A,,. By convention,
two vertices ¢ and j with ¢ < j in a type A, quiver () are connected by an arrow if and only if j = ¢ + 1 and
i€[n—1].

It will be convenient to denote a given type A, quiver ) using the notation )., which we now define. Let
€= (€0, €1,...,6n) € {+,—}"" and for i € [n — 1] define af’ € Q1 by

e t—14+1 : ¢ =—
a;b = . .
t—i1+1 @ =+

Then Qc := ((Qc)o := [n], (Qe)1 := {af* }ic[n—1]) = Q. One observes that the values of ¢y and ¢, do not affect Q..
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+ - + -
Example 2.3. Let n =5 and € = (—, +, —, +, —, +) so that Q. = 1 -1 2 <23 28, 4 X 5 Below we show its
framed quiver Q..

SEREN

Let Q. be given where € = (ep,€1,...,6,) € {+,—}""1. Let 4,5 € [0,n] := {0,1,...,n} where i < j and let

X5 = (V) ee(@yor (957 )ac(@.):) € repi(Qc) be the indecomposable representation defined by

T <l »
v, = {k 1+1<l<y oid =

1 : a=af wherei+1<k<j—1
0 : otherwise

0 : otherwise.

The objects of ind(rep,(Q.)) are those of the form X ; where 0 < i < j < n, up to isomorphism.

3. STRAND DIAGRAMS

In this section, we define three different types of combinatorial objects: strand diagrams, labeled strand
diagrams, and oriented strand diagrams. We will use these objects to classify exceptional collections, exceptional
sequences, and c-matrices of a given type A, quiver Q.. Throughout this section, we work with a given type A,
quiver Q..

3.1. Exceptional sequences and strand diagrams. Let S, . = R? be a collection of n + 1 points arranged
in a horizontal line. We identify these points with ep,€1,...,€, where €; appears to the right of ¢; for any
i,j €[0,n] :={0,1,2,...,n} where i < j. Using this identification, we can write ¢; = (;, ;) € R%.

Definition 3.1. Let i, € [0,n] where i # j. A strand c(i, j) on S, . is an isotopy class of simple curves in R?
where any v € ¢(i, j) satisfies:
a) the endpoints of v are ¢; and ¢;,

b) as asubset of R?, v < {(z,y) e R? : 2; < © < 2; )\ {€it1, €42y -, €j—1],
¢) if k€ [0,n] satisfies i < k < j and e = + (resp. e = —), then « is locally below (resp. above)
€L
There is a natural map ®. from ind(repy (Qc)) to the set of strands on S, ¢ given by ®.(X ;) := c(i, j).

Remark 3.2. It is clear that any strand can be represented by a monotone curve v € ¢(i,5) (i.e. if ¢,s € [0,1]
and t < s, then v () < v(V)(s) where v(!) denotes the x-coordinate function of 7.).

We say that two strands c(i1,71) and c(is, j2) intersect nontrivially if any two curves v, € c(is, jo) with
£ € {1,2} have at least one transversal crossing. Otherwise, we say that ¢(i1,71) and c¢(i2,j2) do not intersect
nontrivially. For example, ¢(1,3),¢(2,4) intersect nontrivially if and only if e = e5. Additionally, we say
that c(iz, j2) is clockwise from c(iy,j1) (or, equivalently, c(i1,71) is counterclockwise from c(iz,j2)) if and
only if any 1 € ¢(i1,J1) and v2 € ¢(is, j2) share an endpoint ¢; and locally appear in one of the following six
configurations up to isotopy.

Y1 Y2 Y1 Y2
Y2 Y1 Y2 Y1 Y2 Y1 Y1 Y2

€ = + €r = + € = + € — — € — — € = — .

Definition 3.3. A strand diagram d = {c(is, j¢)}sefr) (K < 1) on S, ¢ is a collection of strands on S,  that
satisfies the following conditions:

a) distinct strands do not intersect nontrivially, and

b) the graph determined by d is a forest (i.e. a disjoint union of trees)
Let Dy, . denote the set of strand diagrams on S, . with k strands and let D, denote the set of strand diagrams
with any positive number of strands. Then

D, = |_| Di.c.
ke[n]

af a, al
Example 3.4. Let n = 4 and ¢ = (—,+,—,+,+) so that Q. = 1 —> 2 <= 3 —2 4. Then we have that
dy = {c(0,1),¢(0,2),¢(2,3),¢(2,4)} € Dy and dy = {¢(0,4), ¢(1,3),¢(2,4)} € D3 . We draw these strand diagrams
5



below.

V70 U e U

The following technical lemma classifies when two distinct indecomposable representations of Q. define 0, 1,
or 2 exceptional pairs. Its proof appears in Section 3.2.

Lemma 3.5. Let Q. be given. Fix two distinct indecomposable representations U, V' € ind(repy (Q.)).
a) The strands ®.(U) and ®.(V) intersect nontrivially if and only if neither (U, V) nor (V,U) are
exceptional pairs.
b) The strand ®.(U) is clockwise from ®.(V) if and only if (U, V') is an exceptional pair and (V,U)
is not an exceptional pair.
¢) The strands ®.(U) and ®.(V) do not intersect at any of their endpoints and they do not intersect
nontrivially if and only if (U, V) and (V,U) are both exceptional pairs.

Using Lemma 3.5 we obtain our first main result. The following theorem says that the data of an exceptional
collection is completely encoded in the strand diagram it defines.

Theorem 3.6. Let £, := {exceptional collections of @ }. There is a bijection £, — D, defined by
& = {X5, j, beepr) = {®e(XS, ) eern-

Proof. Let &, = {X5, j, }eer) be an exceptional collection of Q.. Let { be an exceptional sequence gotten from
£, by reordering its representations. Without loss of generality, assume ¢ = (bej[)ge[k] is an exceptional
sequence. Thus, (X, jor X, jp) is an exceptional pair for all £ < p. Lemma 3.5 a) implies that distinct strands of
{®(X5, j,)}eerr) do not intersect nontrivially.

Now we will show that {®c(X], ;,)}ecr) has no cycles. Suppose that <I>€()(l-€hd-[1

of length p < k in ®.(&). Then, there exist 4,0, € [k] with ¢, > ¢, such that ®.(X¢

), ey P (XE ) is a cycle

Ly sJep
) is clockwise from

ey 5Tty
®(Xf, ;. ) Thus, by Lemma 3.5 b), (X, ; . Xfewjlb) is not an exceptional pair. This contradicts the fact that
(szvjlZl v X, ,jzp) is an exceptional sequence. Hence, the graph determined by {®¢(Xf, ;,)}ec(x is a tree. We

have shown that ®.(£,) € Dy...

Now let d = {c(ir,je)}re(x] € Dr,e- Since c(ir, je) and c(iy,jm) do not intersect nontrivially, it follows
that (®-1(c(ir, je)), @ (c(im, Gm))) or (R1(c(im,Gm)), P (c(ig, j))) is an exceptional pair for every £ # m.
Notice that there exists c(iy,,j¢,) € d such that (-1 (c(ig,, je,)), - (c(ie, j¢))) is an exceptional pair for every
c(igy je) € d\{c(i¢,,je,)}- This is true because if such c(ip, , jo, ) did not exist, then d must have a cycle. Set E; =
1 (c(ig,, jo,))- Now, choose c(ig,, jg,) such that (O (c(ie,, je,)), 2 (c(ir, jr))) is an exceptional pair for every
c(ig, jo) € d\{c(ie,, je, ), - clie, , e, )} inductively and put E, = ®_*(c(ir,, je,)). By construction, (Ey, ..., Ej) is a
complete exceptional sequence, as desired. [l

Our next step is to add distinct integer labels to each strand in a given strand diagram d. When these labels
have what we call a good labeling, these labels will describe exactly the order in which to put the representations
corresponding to strands of d so that the resulting sequence of representations is an exceptional sequence.

Definition 3.7. A labeled diagram d(k) = {(c(i¢, je), 5¢) }se[k] On Sp,c is a strand diagram on S, . whose strands
are labeled by integers s, € [k] bijectively.

Let €; € Sy, and let ((c(4,71),51)5 - - -, (¢(i,4r), $r)) be the complete list of labeled strands of d(k) that involve
€; and ordered so that strand c(4, ji) is clockwise from c(i, ji/) if & < k. We say the strand labeling of d(k) is
good if for each point ¢; € S, one has s; < --- < s,. Let Dy, (k) denote the set of labeled strand diagrams on
Sp,e with k strands and with good strand labelings.

at ay al
Example 3.8. Let n =4 and € = (—,+,—, +, +) so that Q. = 1 — 2 <= 3 —> 4. Below we show the labeled
diagrams di (4) = {(c(0,1),1),(c(0,2),2), (¢(2,3),3), (c(2,4),4)} and d2(3) = {(c(0,4),1), (¢(2,4),2), (c(1,3),3)}.

We have that di(4) € Dy (4), but da(3) ¢ D3 (3).



Theorem 3.9. Let k € [n] and let E.(k) := {exceptional sequences of Q. of length k}. There is a bijection
O, : E (k) — Dy (k) defined by

§e = (X5, ) eetr) — {(clie, jo)s ko + 1= O)}oepr)-

Proof. Let & = (Vi,..., Vi) € E(k). By Lemma 3.5 a), ®.(£.) has no strands that intersect nontrivially. Let
(V1,V2) be an exceptional pair appearing in & with V; corresponding to strand ¢; in d, (&) for i = 1,2, where ¢;
and ¢y intersect only at one of their endpoints. Note that by the definition of %6, the strand label of ¢; is larger
than that of ¢;. From Lemma 3.5 b), strand ¢; is clockwise from ¢; in ®,(&.). Thus the strand-labeling of ®. (&)
is good, so (&) € Dy (k) for any & € E (k).

Let U, : Dy (k) — & (k) be defined by {(c(ic, jie), ) }eepr = (X
U, (d(k)) € E.(k) for any d(k) € Dy, (k) and that ¥, = 1. Let

We({(clie, o), O)eerr)) = (X, g Xi s gumrs - Xiugn)-
Consider the pair (X{ ; ,Xf . ) with s > s'. We will show that (X , ,Xf, ;) is an exceptional pair and
thus conclude that @E({(C(ig,jg),é)}ge[k]) € & (k) for any d(k) € Dy (k). Clearly, c(is, js) and c(is, js) do not
intersect nontrivially. If ¢(is, js) and ¢(ig, jo) do not intersect at one of their endpoints, then by Lemma 3.5 c)
(X5, ., Xi, ;) is exceptional. Now suppose c(is, js) and c(iy, js) intersect at one of their endpoints. Because
the strand-labeling of {(c(ir, je), £)}eer] is good, c(is, js) is clockwise from c(iy, jo). By Lemma 3.5 b), we have
that (X; , ,X;, ;) is exceptional.

X¢ X¢ . ). We will show that

€
o Jk? T T k—1,Jk—17 """ T 1,01

Gyl g/
To see that ¥, = &1, observe that
Be (Teldelinsge) Obep)) = e (X550 Xo s Xesy))
= {(cie, je) b+ 1= (k+1—0))}eerr)
= {(clie, je), )} eern)-
Thus &De o \TIE = lp, .(r)- Similarly, one shows that \TIG o &)e = lg (k). Thus &JE is a bijection. (]

The last combinatorial objects we discuss in this section are called oriented diagrams. These are strand
diagrams whose strands have a direction. We will use these to classify c-matrices of a given type A, quiver Q..

Definition 3.10. An oriented diagram d = {C (ir, o) fee[r) On Sn e is a strand diagram on S,, . whose strands
(i, je) are oriented from ¢;, to € ,.

Remark 3.11. When it is clear from the context what the values of n and € are, we will often refer to a strand
diagram on S, . simply as a diagram. Similarly, we will often refer to labeled diagrams (resp. oriented diagrams)
on S, as labeled diagrams (resp. oriented diagrams).

We now define a special subset of the oriented diagrams on S, . As we will see, each element in this subset

of oriented diagrams, denoted Z_D)n,e, will correspond to a unique c-matrix C' € c-mat(Q.) and vice versa. Thus
we obtain a diagrammatic classification of c-matrices (see Theorem 3.15).

Definition 3.12. Let @)me denote the set of oriented diagrams d = {C (i, je) }ee[n] ON Sp,c With the property

that any oriented subdiagram 71 of d consisting only of oriented strands connected to €, in S, for some
k € [0,n] is a subdiagram of one of the following:

i) {7C(k,i1), C(k,iz2), €(J,k)} where iy < k < iy and € = + (shown in Figure 2 (left)),

it)  {7T(i1,k), C(iz, k), T(k,j)} where i; < k < iz and e = — (shown in Figure 2 (right)).

AR

€x = + €k = —

FIGURE 2



Lemma 3.13. Let {¢;},c) be a collection of k c-vectors of Q. where k < n. Let &/ = idiim(Xfwé) where the

sign is determined by . If {¢ }i[+] is a noncrossing collection of c-vectors (i.e. ®.(Xf ;,) and @, (Xf,1 i’g) do

not intersect nontrivially for any i,4 € [k]), there is an injective map
{noncrossing collections {¢; };c(x] of Qc} — {oriented diagrams d = {7C (e, Je) Yeeri }

defined by

_ C(i1,i2) : T is positive
C; > e . L = .
C(i2,71) : ©T; is negative.

In particular, each c-matrix C¢ € c-mat(Q.) determines a unique oriented diagram denoted UCE with n oriented
strands.

+ - +
Example 3.14. Let n = 4 and € = (+,+, —, +,—) so that Q. = 1 - 2 &2 3 25, 4 After performing the
mutation sequence p3 o s to the corresponding framed quiver, we have the c-matrix with its oriented diagram.

11 0 0
0 0 1 0 W
0 -1 -1 0
00 0 1

The following theorem shows oriented diagrams belonging to 1_5,“ are in bijection with c-matrices of Q.. We
delay its proof until Section 4 because it makes heavy use of the concept of a mixed cobinary tree.

Theorem 3.15. The map c-mat(Q.) — 671,6 induced by the map defined in Lemma 3.13 is a bijection.

3.2. Proof of Lemma 3.5. The proof of Lemma 3.5 requires some notions from representation theory of finite
dimensional algebras, which we now briefly review. For a more comprehensive treatment of the following notions,
we refer the reader to [ASS06].

Definition 3.16. Given a quiver @ with #Qy = n, the Euler characteristic (of Q) is the Z-bilinear (nonsym-
metric) form Z" x Z"™" — Z defined by

(dim(V), dim(W)) = > (—1)" dim Extjq (V, W)

i>0
for every V, W € rep,(Q).

For hereditary algebras A (e.g. path algebras of acyclic quivers), ExtiA(V, W) =0 for ¢ > 2 and the formula
reduces to

(dim(V), dim(W)) = dim Homyq (V, W) — dim Exty, (V, W)

The following result gives a simple combinatorial formula for the Euler characteristic. We note that this formula
is independent of the orientation of the arrows of Q.

Lemma 3.17. [ASS06, Lemma VII.4.1] Given an acyclic quiver @ with #Qo = n and integral vectors z =
(21,22, o', Zn )y ¥ = (Y1,Y2, -, Yn) € Z", the Euler characteristic of @ has the form

(z,y) = Z TiYi — Z Ts(a)Yt(a)

’LEQQ ate

Next, we give a slight simplification of the previous formula. Recall that the support of V' € rep,(Q) is the
set supp(V) := {i € Qo : Vi # 0}. Thus for quivers of the form Q, any representation X ; € ind(rep,(Q.)) has

supp(X5 ;) = [i + 1, j].
Lemma 3.18. Let X ,, X7, € ind(rep,(Q.)) and A := {a € (Qc)1 : s(a),t(a) € supp(X} ,) nsupp(X;;)}. Then
<@(X;’é)7@(XZ])> = Xsupp(X;Ye)msupp(X,fyj) - # ({a € (QG)I : S(a’) € Supp(Xli,Z)’ t(a’) € Supp(X'f,J)}\A)

where Xsupp(xg ) nsupp(x;,) = 1 if supp(X}, ;) nsupp(X; ;) # & and 0 otherwise.

8



Proof. We have that

dim(Xf ), dim(X;)) = D) dim(XE )mdim(XS ) — Y dim(XE )y dim (X))
me(Qe)o ag(Qe)1
- # (supp(X,z,n A supp (X))
—#{a e (Qo)1 = 5(a) € supp(X{,), t(a) € supp(X,)}
= #(Supp(XH)ﬂsupp( )) #A
~# (o€ (@)1 + s(a) € supp(Xf, ), t(a) € supp(X{,)P\A)

Observe that if supp(Xj ,) nsupp(X; ;) # O, then #A = #(supp(Xf ;) N supp(X;;)) — 1. Otherwise #A = 0.
Thus

(dim(Xf o), dim (X ;)) = Xsupp(xf ) msupp(X7,) — # ({0 € (Qe)1 = s(a) € supp(Xf ), t(a) € supp(X ;)}\A) .
]

In the sequel, we will use this formula for the Euler characteristic without further comment. We now present
several lemmas that will be useful in the proof of Lemma 3.5. The proofs of the next four lemmas use very
similar techniques so we only prove Lemma 3.19. The following four lemmas characterize when Homyg_ (—, —)
and Extﬂngﬁ(—, —) vanish for a given type A, quiver Q.. The conditions describing when Homyg_ (—,—) and
Extunge (—, —) vanish are given in terms of inequalities satisfied by the indices that describe a pair of indecomposable
representations of ). and the entries of e.

Lemma 3.19. Let Xj ,, X7, € ind(repy(Q)). Assume 0<i<k<j</{<n
i) Homgq, (X;;, Xf,) # 0 if and only if ¢, = — and ¢; = —.

i7) Hom]kQ (X,c e,X ;) # 0if and only if ¢, = + and ¢; = +.

) Exth (X¢ ”, )

iv) Exty, (X500 X55)

# 0 if and only if €, = + and ¢; = +
# 0 if and only if ¢, = — and ¢; = —.

Proof. We only prove i) and iv) as the proofs of i) is very similar to that of ¢) the proof of ¢i7) is very similar to
that of 7v). To prove i), first assume there is a nonzero morphism ¢ : X, — Xg ,. Clearly, 05 = 0if s ¢ [k + 1, 7].
If 65 # 0 for some s € [n], then 6, = A for some A € k* (i.e. 0 is a nonzero scalar transformation). As 6 is a
morphism of representations, it must satisfy that for any a € (Qc)1 the equality 0,057 = ¢%46,,) holds. Thus

for any a € {a;"'], ..., ;J 1}, we have 0, (4) = 05(q). As 0 is nonzero, this implies that , = X for any s € [k + 1, 7].
If @ = a3, then we have
at(a)wfij = (pg’éas(a)
9t(a) = 0.
Thus €, = —. Similarly, ¢; = —.
Conversely, it is easy to see that if €, = ¢; = —, then 6 : X7, — X[ , defined by 6, = 0 if s ¢ [k +1,5] and

fs = 1 otherwise is a nonzero morphism.
Next, we prove iv). Observe that by Lemma 3.18 we have

dim Bl (X0 X1)) = dim Homag, (0. X )~ @im(X{ )X,
= dim Homygg, (X,M7X6 ) -

+# (1be Qo : (b)ESUPp(XE,e)a () € supp(X; )\A) -

Note that # ({b € (Qe)1 : s(b) € supp(Xf ), t(b) € supp(Xf)j)}\A) < 2. Furthermore, the argument in the first

paragraph of the proof shows that dim Homkq, (X} ,, X5 ;) < 1. By i), we have that Exth (Xgo X5;) # 0if
and only if €, = ¢; = —. O

Lemma 3.20. Let X} ,, X7, € ind(repy(Qe)). Assume 0 <i<k<l<j<n
i) Homyg, (X”,Xk ;) # 0 if and only if ¢, = — and ¢, = +.
i) Hoka (X,M,X6 ) # 0 if and only if ¢, = + and ¢, =
144) Exth (X5,, X ) #0if and only if e = + and ¢, = —
i)  Extyg, (X5 X5;) # 0if and only if e = — and e, = +.

9



Lemma 3.21. Assume 0 < i < k < j <n. Then
) Hokaé(Xlk,ij)—Oand HOInkQE(XkJ,X k)=0.
) Exth (X5 r X5 ;) # 0if and only if ¢ =
) Exth (X% Xfg) # 0if and only if €, = —
) Homyq (Xf,, X[ ;) # 0 if and only if ¢, = —.
v)  Homyq, (X5 ;, X§ k) # 0 if and only if ¢ = +.
) Extig (X£,, X¢,) =0and Exty, (Xf,, X¢,)=0.
) Homyg, (X,H,X6 ;) # 0 if and only if €, = +
i) HokaE (X5 ;5 X ;) # 0 if and only if e = —.
)

Extyo, (X§ ;, X£;) = 0 and Extyo (X, X5 ) = 0.

Lemma 3.22. Let X} ,, X7, € ind(repy(Qc)). Assume 0 <i <j <k <{<mn. Then
i) Hokas(leXk e) =0, HokaE (Xk er ) =0,

z N
Next, we present three geometric facts about pairs of distinct strands. These geometric facts will be crucial
in our proof of Lemma 3.5.

Lemma 3.23. If two distinct strands (i1, j1) and ¢(iz, j2) on S, ¢ intersect nontrivially, then c(i1, j1) and c(i2, j2)
can be represented by a pair of monotone curves that have a unique transversal crossing.

Proof. Suppose c(i1,71) and c(iz, j2) intersect nontrivially. Without loss of generality, we assume i1 < is. Let
i € c(ig, jx) with k € [2] be monotone curves. There are two cases:
a) i1 <iz <ji<jo
b) i1 <o < jo < J1.
Suppose that case a) holds. Let (z/,y’) € {(z,y) € R? : x;, < z < x;,} denote a point where 7; crosses 7o

transversally. If ¢;, = — (resp. €;, = +), isotope 71 relative to ¢;, and (2/,y") in such a way that the monotonocity
of 41 is preserved and so that v; lies strictly above (resp. strictly below) vo on {(z,y) e R? : z;, < z < 2'}.
Next, if €;, = — (resp. €;, = +), isotope 72 relative to (z’,y’) and ¢, in such a way that the monotonicity of

72 is preserved and so that 7o lies strictly above (resp. strictly below) v1 on {(z,y) € R? : 2/ < x < x;,}. This
process produces two monotone curves 1 € ¢(i1, j1) and 2 € c(ig, j2) that have a unique transversal crossing.
The proof in case b) is very similar. O

Lemma 3.24. Let c¢(i1, j1) and c(iz, j2) be distinct strands on S, . that intersect nontrivially. Then c(i1, j1) and
¢(iz, j2) do not share an endpoint.

Proof. Suppose c(i1,71) and c(i2,j2) share an endpoint. Since c¢(i1,71) and c(iz, j2) intersect nontrivially, then
there exist curves y; € c(ig,jx) with k € {1,2} that have a unique transversal crossing. However, since ¢(i1, j1)
and c(iz, j2) share an endpoint, 7, and 75 are isotopic relative to their endpoints to curves with no transversal
crossing. This contradicts that ¢(i1,j1) and ¢(is, j2) share an endpoint. O

Remark 3.25. If ¢(i1, j1) and c(i2,j2) are two distinct strands on S, . that do not intersect nontrivially, then
(i1, j1) and c(ia,j2) can be represented by a pair of monotone curves 7, € c(is, jo) where £ € [2] that are
nonintersecting, except possibly at their endpoints.

We now arrive at the proof of Lemma 3.5. The proof is a case by case analysis where the cases are given in
terms of inequalities satisfied by the indices that describe a pair of indecomposable representations of Q. and the
entries of e.

Proof of Lemma 3.5 a). Let X;; :=U and X} , := V. Assume that the strands ®(X5 ;) and ®(X ,) intersect
nontrivially. By Lemma 3.24, we can assume without loss of generality that either 0 < i < k < j < /{ < n or
0<i<k<{<j<n ByLemma 3.23, we can represent (X5 ;) and ®.(Xf ,) by monotone curves ~; ; and
that have a unique transversal crossing. Furthermore, we can assume that this unique crossing occurs between
€, and €1 1. There are four possible cases:
i) € = €rp1 = —

ZZ) € = — and €r+1 = +,

11) € = €py1 = +,

w) € =+ and €y = —
We illustrate these cases up to 1sot0py in Figure 3. We see that in cases i) and i) (resp. iii) and v)) 7y ¢ lies
above (resp. below) ~; ; inside of {(z,y) € R? : zp11 <2 < Timin{e,j} ) -
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; €k+1:+ € =+ €k+1*+ € =+
- €k+1:_ E €k+1*

FIGURE 3. The four types of crossings
Suppose 7k ¢ lies above 7; ; inside {(z,y) € R? : #441 < & < Zyinge,j1}- Then

€min{¢,5}

+ : min{l,j} =/
= ¢+ min{l,j} =

otherwise 75 ¢ and y; ; would have a nonunique transversal crossing. If min{¢, j} = ¢, wehave 0 <i<k </f<j <

n, € = —, and ¢ = +. Now by Lemma 3.20, we have that Homyq, (X[ ;, Xj ,) # 0 and ExtﬂiQF (Xio X5 ;) #0.
If min{¢,j} = j, then 0 < i <k < j <{ <n, e = —, and ¢, = —. Thus, by Lemma 3.19, we have that
Hokae(X”,Xk(,) # (0 and Exth (X;[,X ) # 0.

Similarly, if ~; ; lies above v, inside {(w Y)eR?:zp <z < Tmin{e,5} ) it follows that
o — : min{l,j} =¢
min{é,s} + @ min{,j} = j.
If min{¢, j} = ¢, then Lemma 3.20 implies that Homyq, (X}, ,, X ;) # 0 and ExtﬂiQ (XfJ,X,;Z) # 0. If min{¢, j} =
J, then Lemma 3.19 implies that Homyq, (Xj 4, X5 ;) # 0 and Exth (Xs ;s X5 o) # 0. Thus we conclude that
neither (X ;, Xj ,) nor (X ,, X7 ;) are exceptional pairs.
Conversely, assume that neither (U, V') nor (V, U) are exceptional pairs where Xf ; := U and X} , := V. Then
at least one of the following is true:

a) Homyq (X5 ;,Xi,) # 0 and Hokae (X5 X5 ) #
b) Hoka (X5 ;s Xk o) # 0 and Exth (XH,X )760
) Extyo. (X5, Xip) # 0 and Hom]kQ (X500 X5 ) #0,
d) Exty, (Xf,, X5,) # 0 and Extjq (X;Z,XE ) # 0.
As X ; and X} , are indecomposable and distinct, we have that Homyq, (X ;, Xf. ,) = 0 or Homyq, (X} ,, X{ ;) =

0. Wlthout loss of generality, assume that Homyq, (XF ,, Xm) = 0. Thus b) or d) hold so Exth (X500 X5 ;) # 0.
Then Lemma 3.21 and Lemma 3.22 imply that 0 <i<k<j</f<nor0<i<k</{l{<j<
If0<i<k<j<d{l<mn, wehave ¢ = ¢ = — by Lemma 3.19 as Hokae(szX/:,e) # 0 and
Extnngs (Xios X5j) # 0. Let ;5 € ®(X;;) and e € ®(Xf ). We can assume that there exists (k) > 0
such that 7; ; and 7y, have no transversal crossing inside {(z,y) € R? : ;, < < 2 + §(k)}. This implies that
7:.5 lies above 7y ¢ inside {(z,y) € R? : z;, < & <z + §(k)}. Similarly, we can assume there exists §(j) > 0 such
that v; ; and v, ¢ have no transversal crossing inside {(z,y) € R? : z; — §(j) < < x;}. Thus 7;; lies below i ¢
inside {(z,y) € R? : z; — 0(j) < = < x;}. This means 7; ; and v, must have at least one transversal crossing.
Thus ®.(X; ;) and ®(X} ,) intersect nontrivially. An analogous argument shows that if 0 <i <k <l <j<mn,

then @ (X5 ;) and ®.(Xf ,) intersect nontrivially. O
Proof of Lemma 3.5 b). Assume that ®.(U) is clockwise from ®.(V). Then we have that one of the following
holds:

a) Xp;=Uand X{; =V iforsome0<i<k<j<n

=

)
) Xip=Uand X; =V forsome(0<i<k<j<n,

) Xi;=Uand X;; =V forsome0<i<j<nand0<i<k<n
d Xi;=Uand Xj,;=Vforsome0<i<j<nand0<k<j<n

In Case a) we have that e, = — since ®(Xj ;) is clockwise from ®(X{;). By Lemma 3.21 i) and ii),

we have that Homyq, (X, Xf ;) = 0 and Ext]ﬁQe (X5 r X ;) = 0. Thus (Xj ;, Xf,) is an exceptional pair. By
Lemma 3.21 4i7), we have that ExtﬂngE (X% Xfx) # 0. Thus (Xf,, X} ;) is not an exceptional pair.
11
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In Case b), we have that e, = + since ®(Xf,) is clockwise from ®(X} ;). By Lemma 3.21 i) and dii),

we have that Homyg, (X,”,XZ x) = 0 and Exth (X;J,ka) = 0. Thus (kavacj) is an exceptional pair. By
Lemma 3.21 4i), we have that Exthé (X h X5 ;) # 0. Thus (Xk j» X5 ) 1s not an exceptional pair.

In Case c), if j < k, it follows that €; = —. Indeed, ®.(X{ ;) is clockwise from ®.(X7,) and so by Lemma 3.24
the two do not intersect nontrivially. Now by Remark 3.25, we can choose monotone curves Vi € P (Xf ) and
Yi,j € @(X; ;) such that ; x lies strictly above ; ; on {(z,y) € R* : 2; < & < x;}. Thus ¢; = —. By Lemma 3.21

v) and vi), we have that Homyq, (X7, X ;) = 0 and Exth (X, X§;) = 0so that (X7 ;, X7, ) is an exceptional
pair. By Lemma 3.21 4v), we have that Homyq, (X ;, Xf;) # 0. Thus (X{y, Xf ;) is not an exceptional pair.
Similarly, one shows that if & < j, then e, = +. By Lemma 3.21 iv) and vi), we have that Homyq, (X7, X{ ;) =
0 and Extﬂng (X51 X5;) = 0 so that (Xf],vak) is an exceptional pair. By Lemma 3.21 v), we have that
Homyq, (X§ i Xy k) # 0. Thus (XZ ¢ ) is not an exceptional pair. The proof in Case d) is completely analo-
gous to the proof in Case ¢) so we omit 1t
Conversely, let U = X; ; and V = X} , and assume that (X ;, X} /) is an exceptional pair and (X} ,, X ;) is
not an exceptional pair. Thlb implies that at least one of the followmg holds:
1) Homug, (Xf, XE,) = 0, Extlg (X, X¢,;) = 0, and Homyg, (XE;, Xf.,) # 0,
2) Homygq, (Xf ,, Xf;) = 0,Extyq (X5, X5;) =0, and Extyq (Xf;, X5 ,) # 0.
By Lemma 3.22, we know that [i,7] n [k, €] # &. This implies that either
i) P(X;;) and ®(X} ,) share an endpoint,
) 0<i<k<j<{l<n,
i) 0<i<k<l<j<mn,
w) 0<k<i<fl<j<n,
) 0<k<i<j<{i<n.
We will show that ®.(X; ;) and ®(X} ,) share an endpoint.

Suppose 0 < i < k < j < £ < n. Then since Homyq, (X} ,, X5 ;) = 0, Extﬂng (X% X5 ;) = 0, we have by

Lemma 3.19 i7) and iv) that either ¢, = — and ¢; = 4 or ¢, = + and ¢; = —. However, as Hoka (X5, X5 #0
or ExtnlﬁQ (X5, X5 o) # 0, Lemma 3.19 i) and i) we have that €, = ¢; = — or ¢4 = ¢; = +. This contradicts

that 0 <i < k < j </ < n. An analogous argument shows that ¢, j, k,£ do not satisfy 0 < k<i<f<j<n
Suppose 0 < i < k < £ < j < n. Then since Homyg, (X,M,X6 ) = 0,Exty, (Xg.eo X5;) = 0, we have
by Lemma 3.20 i) and iv) that either ¢, = ¢, = + or ¢, = ¢4 = —. However, as Hokae (X”,X,;g) # 0
or ExtﬂiQ (XfJ,X,Z’e) # 0, Lemma 3.20 i) and #i7) we have that ¢, = — and ¢y = + or ¢, = + and ¢ = —.
This contradicts that 0 < ¢ < k < £ < j < n. An analogous argmuent shows that ,j,k,¢ do not satisfy
O<k<i<j<il<n.
We conclude that ®.(U) and ®.(V) share an endpoint. Thus we have that one of the following holds where
we forget the previous roles played by i, 7, k:
a) Xj;=Uand X§; =V forsome0<i<k<j<n
b) m—UandX€ =Viforsome0<i<k<j<n,
c) X§; —UandXEk7VforsomeO<z<j nand 0<i<k<n
d) X6 j=Uand X; ; =V forsome0<i<j<nand0<k<j<n

Suppose Case a) holds. Then since (U,V) is an exceptional pair, we have Ex‘c]}l@e (Xf’k,X,;j) = 0. By
Lemma 3.21 i), we have that ¢, = —. Thus ®.(U) is clockwise from ®.(V).
Suppose Case b) holds. Then since (U,V) is an exceptional pair, we have ExtuiQe (X,;j,vak) = 0. By

Lemma 3.21 4i7), we have that e, = +. Thus ®.(U) is clockwise from ®.(V).
Suppose Case c) holds. Assume k < j. Then Lemma 3.21 iv) and the fact that Homyq, (X, X7 ;) = 0 imply

that e, = +. Thus we have that ®(U) = ®.(X ;) is clockwise from ®.(V) = (X}, ). Now suppose j < k.
Then Lemma 3.21 v) and Homygg, (X5, X; ;) = 0 imply that ¢; = —. Thus we have that ®.(U) = ®.(X; ) is
clockwise from ®.(V) = (X} ). The proof in Case d) is very similar so we omit it. O

Proof of Lemma 8.5 ¢). Observe that two strands ¢(i1, j1) and c(ia, j2) share and endpoint if and only if one of

the two strands is clockwise from the other. Thus Lemma 3.5 a) and b) implies that ®.(U) and ®.(V) do not

intersect at any of their endpoints and they do not intersect nontrivially if and only if both (U, V') and (V,U) are

exceptional pairs. O
12



4. MIXED COBINARY TREES

We recall the definition of an e-mixed cobinary tree and construct a bijection between the set of (isomorphism
classes of) such trees and the set of maximal oriented strand diagrams on Sy, .

Definition 4.1. [IO13] Given a sign function € : [0,n] — {+, —}, an e-mixed cobinary tree (MCT) is a tree
T embedded in R? with vertex set {(i,y;)|i € [0,n]} and edges straight line segments and satisfying the following

conditions.
a) None of the edges is horizontal.

b) Ife; = + then y; = z for any (i,2) € T. So, the tree goes under (i, y;).
¢) Ife = — then y; < z for any (i,2) € T. So, the tree goes over (i,y;).
d) 1If ¢, = + then there is at most one edge descending from (i,y;) and
at most two edges ascending from (7, y;) and not on the same side.
e) If ¢, = — then there is at most one edge ascending from (i,y;) and
at most two edges descending from (7, y;) and not on the same side.
Two MCT’s T, T’ are isomorphic as MCT’s if there is a graph isomorphism T =~ 7" which sends (,y;) to
(,y;) and so that corresponding edges have the same sign of their slopes.

Given a MCT T, there is a partial ordering on [0, n] given by ¢ <7 j if the unique path from (4, y;) to (j,y;)
in T is monotonically increasing. Isomorphic MCT’s give the same partial ordering by definition. Conversely,
the partial ordering <7 determines T uniquely up to isomorphism since T is the Hasse diagram of the partial
ordering <. We sometimes decorate MCT’s with leaves at vertices so that the result is trivalent, i.e., with
three edges incident to each vertex. See, e.g., Figure 5. The ends of these leaves are not considered to be vertices.
In that case, each vertex with ¢ = 4+ forms a “Y” and this pattern is vertically inverted for e = —. The position
of the leaves is uniquely determined.

(4,1)
(2a 71)
FIGURE 5. This MCT (in blue)
FIGURE 4. AMCT withe; = €3 = has added green leaves showing
—, €3 = + and any value for €, €. that e = (—, 4+, —, —).

In Figure 5, the four vertices have coordinates (0,yo), (1,91), (2,¥2), (3,y3) where y; can be any real numbers
so that 1o < 11 < 2 < y3. This inequality defines an open subset of R* which is called the region of this tree
T. More generally, for any MCT T, the region of T, denoted R (T), is the set of all points y € R*™! with
the property that there exists a mixed cobinary tree 7" which is isomorphic to T so that the vertex set of T” is
{(@, i) |i e [n]}.

Theorem 4.2. [I013] Let n and € : [n] — {4+, —} be fixed. Then, for every MCT T, the region R(T) is convex
and nonempty. Furthermore, every point ¥ = (o, ,¥,) in R*™! with distinct coordinates lies in R(T') for a
unique T (up to isomorphism). In particular these regions are disjoint and their union is dense in R™*1.

For a fixed n and € : [n] — {+, —} we will construct a bijection between the set 7. of isomorphism classes of
mixed cobinary trees with sign function € and the set D,,  defined in Definition 3.12.

Lemma 4.3. Let d = {C(ie, Je) Yeepn) € Z_))mE. Let p, ¢ be two points on this graph so that ¢ lies directly above
p. Then each edge of 'd in the unique path v from p to ¢ is oriented in the same direction as 7.

Proof. The proof will be by induction on the number m of internal vertices of the path . If m = 1 with internal
vertex €; then the path v has only two edges of d: one going from p to ¢;, say to the left, and the other going
from ¢; back to ¢. Since de Z_?)n@ the edge coming into ¢; from its right is below the edge going out from ¢; to
q. Therefore the orientation of these two edges in "d matches that of 5.
Now suppose that m > 2 and the lemma holds for smaller m. There are two cases. Case 1: The path  lies
entirely on one side of p and ¢ (as in the case m = 1). Case 2: v has internal vertices on both sides of p, g.
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Case 1: Suppose by symmetry that « lies entirely on the left side of p and ¢. Let j be maximal so that ¢; is
an internal vertex of v. Then v contains an edge connecting €; to either p or ¢, say p. And the edge of v ending in
g contains a unique point r which lies above €;. This forces the sign to be ¢; = —. By induction on m, the rest of
the path v, which goes from €; to r has orientation compatible with that of d. So, it must be oriented outward
from €;. Any other edge at ¢ is oriented inward. So, the edge from p to ¢; is oriented from p to ¢; as required.
The edge coming into r from the left is oriented to the right (by induction). So, this same edge continues to be
oriented to the right as it goes from r to g. The other subcases (when ¢; is connected to ¢ instead of p and when
~ lies to the right of p and ¢) are analogous.

Case 2: Suppose that «v on both sides of p and gq. Then v passes through a third point, say r, on the same
vertical line containing p and g. Let ¢ and v, denote the parts of « going from p to r and from r to g respectively.
Then g, 1 each have at least one internal vertex. So, the lemma holds for each of them separately. There are
three subcases: either (a) r lies below p, (b) r lies above ¢ or (c) r lies between p and ¢. In subcase (a), we have,
by induction on m, that g, y; are both oriented away from r. So, r = €, = + which contradicts the assumption
that ¢ lies above r. Similarly, subcase (c) is not possible. In subcase (b), we have by induction on m that the
orientations of the edges of d are compatible with the orientations of vy and ;. So, the lemma holds in subcase
(b), which is the only subcase of Case 2 which is possible. Therefore, the lemma holds in all cases. O

Theorem 4.4. For each d = {7 (ie, Je) Yee[n) € ’l_))n’é, let R(U) denote the set of all y € R"*! so that y; < y;
for any @ (4,7) in 'd. Then R(E)) =
gives a bijection

R(T) for a uniquely determined mixed cobinary tree 7. Furthermore, this

—>
Dn,e = 7;

Proof. We first verify the existence of a mixed cobinary tree T' for every choice of y € R(z) Since the strand
diagram is a tree, the vector y is uniquely determined by yo € R and y;j, — y;, > 0, £ € [n], which are arbitrary.
Given such a y, we need to verify that the n line segments L, in R? connecting the pairs of points (i¢, yi,), (je, yj,)
meet only on their endpoints. This follows from the lemma above. If two of these line segments, say Ly, Ly, meet
then they come from two distinct points p € € (i, jx) and g = € (i¢, jo) in the strand diagram which lie one the
same vertical line. If ¢ lies above p in the strand diagram then, by Lemma 4.3, the unique path + from p to ¢
is oriented positively. This implies that the y coordinate of the point in Lj corresponding to p is less that the
y coordinate of the point in L, corresponding to ¢q. Thus, this intersection is not possible. So, T is a linearly
embedded tree. The lemma also implies that the tree T' lies above all negative vertices and below all positive
vertices. The other parts of Definition 4.1 follow from the definition of an oriented strand diagram. Therefore
T € 7. Since this argument works for every y € R(d ), we see that R(d) = R(T) as claimed.

A description of the inverse mapping 7. — Y_D)n,e is given as follows. Take any MCT T and deform the tree
by moving all vertices vertically to the subset [n] x 0 on the z-axis and deforming the edges in such a way that
they are always embedded in the plane with no vertical tangents and so that their interiors do not meet. The
result is an oriented strand diagram d with R(d) = R(T).

It is clear that these are inverse mappings giving the desired bijection Y_D)n’e ~ T.. (I

Example 4.5. The MCTs in Figures 4 and 5 above give the oriented strand diagrams:

and the oriented strand diagram in Example 3.14 gives the MCT:

\ﬁ%@y

We now arrive at the proof of Theorem 3.15. This theorem follows from the fact that oriented diagrams
belonging to D, . can be regarded as mixed cobinary trees by Theorem 4.4.
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Proof of Theorem 3.15. Let f be the map c-mat(Q.) — T))me induced by the map defined in Lemma 3.13, and let g

be the bijective map T, — 1_5”’6 defined in Theorem 4.4. We will assert the existence of a map h : c-mat(Q.) — ¢
which fits into the diagram

c-mat(Q.) h T.
T))n,e

The theorem will follow after verifying that h is a bijection and that f = go h.

We will define two new notions of c-matrix, one for MCT’s and one for oriented strand diagrams. Let
T € 7. with internal edges ¢; having endpoints (i1, y;,) and (is,y;,). For each ¢;, define the ‘c-vector’ of ¢; to
be ¢;(T) = X, < j<i, 580(¢;)e;, where sgn(¢;) is the sign of the slope of ;. Define ¢(T') to be the ‘c-matrix’ of
T whose rows are the c-vectors ¢;(T"). Now, let d = {C(ie,Je) bee[n) € ﬁn,e' For each oriented strand @ (ig, j¢),
define the ‘c-vector’ of € (ig, j¢) to be

co(d) = Diip<ksj, S80(C (i, Je))ex = i < Je
' Djp<ksi, S80(C (ie, jo))ex = de > Je

where sgn( (i, j¢)) is positive if i, < j, and negative if i, > j,. Define ¢(d) to be the ‘c-matrix’ of d whose
rows are the c-vectors co(d).

It is known that the notion of c-matrix for MCT’s coincides with the original notion of c-matrix defined
in Section 2.1, and that there is a bijection between c-mat(Q.) and 7. which preserves c-matrices (see [I013,
Remarks 2 and 4] for details). Thus, we have a bijective map h : c-mat(Q.) — 7c. On the other hand, the
bijection g : T, — 1_571’6 defined in Theorem 4.4 also preserves c-matrices. The map f : c-mat(Q.) — 7¢ preserves
c-matrices by definition. Hence, we have f = go h and f is a bijection, as desired. O

Remark 4.6. For linearly-ordered quivers (those with € = (+,...,+) or ¢ = (—,...,—)), this bijection was
established by the first and third authors in [GM15] using a different approach. The bijection was given by hand
without going through MCT’s. This was more tedious, and the authors feel that some aspects (such as mutation)
are better phrased in terms of MCT'’s.

5. EXCEPTIONAL SEQUENCES AND LINEAR EXTENSIONS

In this section, we consider the problem of counting the number of CESs arising from a given CEC. We show
that this problem can be restated as the problem of counting the number of linear extensions of certain posets.
Throughout this section we fix a strand diagram d = {c(ir, j¢) }re[n] ON Sne-

Definition 5.1. We define the poset Pyq = ({c(i¢, jir)}se[n], <) associated to d as the partially ordered set whose
elements are the strands of d with covering relations given by ¢(i,j) < ¢(k, ) if and only if the strand c(k, ) is
clockwise from ¢(i,j) and there does not exist another strand c(i’, j') distinct from ¢(i,j) and c(k, £) such that
e(i',7") is clockwise from ¢(7, j) and counterclockwise from c(k, ¢).

The construction defines a poset because any oriented cycle in the Hasse diagram of P, arises from a cycle
in the underlying graph of d. Since the underlying graph of d is a tree, the diagram d has no cycles. In Figure 6,
we show a diagram d € Dy  where € := (—, +, —, +,+) and its poset Pg.

N NN NS
‘\/Y\\/\J\/\@

FIGURE 6. A diagram and W

its poset.
FiGure 7. Two diagrams

with the same poset.
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Let P be a finite poset with m = #P. Let f : P — m be an injective, order-preserving map (i.e. =z <y
implies f(z) < f(y) for all z,y € P) where m is the linearly-ordered poset with m elements. We call f a linear
extension of P. We denote the set of linear extensions of P by Z(P). Note that since f is an injective map
between sets of the same cardinality, f is a bijective map between those sets.

In general, the map D, — P (Dy.) := {Pq : d € D, .} is not injective. For instance, each of the two
diagrams in Figure 7 have Py = 4 where 4 denotes the linearly-ordered poset with 4 elements. It is thus natural
to ask which posets are obtained from strand diagrams.

Our next result describes the posets arising from diagrams in D,, . where € = (—,...,—) or € = (+,..., +).
Before we state it, we remark that diagrams in D,, . where € = (—,...,—) or € = (+,...,+) can be regarded as
chord diagrams.! The following example shows the simple bijection.

K\/\ — 1 3

2

Let d € D,, . where e = (—,...,—) or € = (+,...,+). Let ¢(4,5) be a strand of d. There is an obvious action
of Z/(n + 1)Z on chord diagrams. Let 7 € Z/(n + 1)Z denote a generator and define 7¢(i, j) :==c¢(i— 1,5 — 1) and
771¢e(i, ) := c(i+1,j + 1) where we consider i £ 1 and j £ 1 mod n + 1. We also define 7d := {Tclie, je) }oern) and
774 = {77 Le(iy, Je)}re[n]- The next lemma, which is easily verified, shows that the order-theoretic properties of
CECs are invariant under the action of 7%

Lemma 5.2. Let d€ D,, . where e = (—,...,—) or € = (+,...,+). Then we have the following isomorphisms of
posets Py = P,q and Py = P,-14.

Theorem 5.3. Let e = (—,...,—) or let e = (+,...,+). Then a poset P € #(D,, ) if and only if
i) each x € P has at most two covers and covers at most two elements,
1) the underlying graph of the Hasse diagram of P has no cycles,
1i1) the Hasse diagram of P is connected.

Proof. Let Py e #(D,,). By definition, Py satisfies ¢). It is also clear that the Hasse diagram of P, is connected
since d is a connected graph. To see that P, satisfies i), suppose that C is a full subposet of P; whose Hasse
diagram is a minimal cycle (i.e. the underlying graph of C is a cycle, but does not contain a proper subgraph
that is a cycle). Thus there exists z¢ € Py such that x¢ € C' is covered by two distinct elements y, z € C. Observe
that C' can be regarded as a sequence of chords {ci}fzo of d in which y and z appear exactly once and where for
all i € [0,4] ¢; and ¢;41 (we consider the indices modulo ¢ + 1) share a marked point j and no chord adjacent to
j appears between ¢; and ¢;11. Since the chords of d are noncrossing, such a sequence cannot exist. Thus the
Hasse diagram of P, has no cycles.

To prove the converse, we proceed by induction on the number of elements of P where P is a poset satisfying
conditions 7), %), #i¢). If #P = 1, then P is the unique poset with one element and P = Py where d is the unique
chord diagram associated to the disk with two marked points that is a spanning tree. Assume that for any poset
P satisfying conditions 4),41),4¢) with #P = r for any positive integer r < n + 1 there exists a chord diagram
d such that P = Py. Let Q be a poset satisfying the above conditions and assume #Q =n + 1. Let x € Q be a
maximal element.

Assume z covers two elements y,z € Q. Then the poset Q — {z} = Q; + Qs where y € Q;, z € Qy, and
Q; satisfies 1),4i),4i1) for ¢ € [2]. By induction, there exists positive integers ki, ko satisfying ki + k2 = n and
diagrams

d; € Dy, » = {diagrams {c;(i¢, je)}se[r,] in a disk with k; + 1 marked points}

where Q; = Py, for i € [2] and where () € {+, —}F+1 has all of its entries equal to the entries of e¢. By
Lemma 5.2, we can further assume that the chord corresponding to y € Q1 (resp. z € Qo) is ¢1(i(y), k1) € dy for

IThese noncrossing trees embedded in a disk with vertices lying on the boundary have been studied by Araya in [Aral3], Goulden
and Yong in [GY02], and the first and third authors in [GM15].
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some i(y) € [0,k — 1] (resp. ca(j(2), k2) € do for some j(z) € [1, kz]). Define dy i dy := {c'(i}, j}) }re[n] tO be the
diagram in the disk with n + 2 marked points as follows:
Cl(i/ J/) o Cl(ig,jg) : ifle [/4}1]
OI 7R D ey (Gggy Jo—ry) ¢ if L€ [k + 1,m).

Q-0

FIGURE 8. An example with k1 = 3 and ko = 2 so that n = k1 + ko = 5.

Define ¢'(i},, 1, j5,+1) := c(k1,n + 1) and then d := {c/(i}, jp) }ee[n+1] satisfies i), ii), 744), and Q = Py.

If the Hasse diagram of Q — {z} is connected, then by induction the poset Q — {z} = Py for some diagram
d = {c(i¢, je)}te[n] € Dn,c where we assume 4y < jy. Since the Hasse diagram of Q — {x} is connected, it follows
that « covers a unique element in Q. Let y = c(i(y),j(y)) € @ —{x} (i(y) < j(y)) denote the unique element that
is covered by z in Q. This means that there are no chords in d obtained by a clockwise rotation of ¢(i(y), j(y))
about i(y) or there are no chords in d obtained by a clockwise rotation of ¢(i(y), j(y)) about j(y). Without loss
of generality, we assume that there are no chords in d obtained by a clockwise rotation of ¢(i(y), j(y)) about i(y).

Regard d as an element of D, 1 « where € € {+, —}""2 has all of its entries equal to the entries of € as follows.

Replace it with d:= {c/ (i), J7) }te[n] € Dny1,e defined by (we give an example of this operation below with n = 6)

pte(ie, jo) ¢ ifip <i(y) and j(y) < jo,
iy, Jy) = T e(ie, jo) ¢ if j(y) <o,
c(igy je) . otherwise.

SERNG

FIGURE 9. An example with n = 6.

Define ¢'(i},, 1, 4y41) := c(i(y),i(y) + 1) and put d' := {c'(i}, j}) }re[n+1]- As Q@ — {x} satisfies 7),77), and iii), it is
clear that the resulting chord diagram d’ satisfies P = Py. O

Theorem 5.4. Let d = {c(i¢, je)}re[n] € Dn,c and let £, denote the corresponding complete exceptional collection.
Let CES(€,) denote the set of CESs that can be formed using only the representations appearing in .. Then

the map y : CES(E,) — Z(Py) defined by (X ..., X{, ;) = {(clie,je),n + 1= O)}eepn) = (f(clic, jo)) =
n+ 1 —£) is a bijection.

Proof. The map x2 = ® : CES(,,) — D, (n) is a bijection by Theorem 3.9. Thus it is enough to prove that
X1 : Dpe(n) = Z(Py) is a bijection.

First, we show that x1(d(n)) € Z(Py) for any d(n) € D, (n). Let d(n) € D, (n) and let f := x1(d(n)).
Since the strand-labeling of d(n) is good, if (¢1,¢1) and (cz, ¢2) are two labeled strands of d(n) satisfying ¢; < ca,
then f(c1) = €1 < €y = f(c2). Thus f is order-preserving. As the strands of d(n) are bijectively labeled by [n],
we have that f is bijective so f € Z(Py).

Next, define a map

L(Py) > D)
o A{(clie, o), f(clie, 3e))) }eefn)-
To see that ¢(f) € D, (n) for any f € £ (Py), consider two labeled strands (ci, f(c1)) and (e, f(c2)) belonging
to ¢(f) where ¢; < ¢3. Since f is order-preserving, f(c1) < f(c2). Thus the strand-labeling of ¢(f) is good so
o(f) € L(Pa).
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Lastly, we have that
x1(p(f)) = x1({(c(ie, o), f(clic, o)) }een)) = f

and
p(xa({(c(ie, Je), O}eern))) = @(f (clie Jio)) 2= €) = {(clie; 3e), O) }eeln)
S0 = Xl_l. Thus x; is a bijection. O

6. APPLICATIONS
Here we showcase some interesting results that follow easily from our main theorems.

6.1. Labeled trees. In [SW86, p. 67], Stanton and White gave a nonpositive formula for the number of vertex-
labeled trees with a fixed number of leaves. By connecting our work with that of Goulden and Yong [GY02],

we obtain a positive expression for this number. Here we consider diagrams in D,, . where € = (—,...,—) or
€= (+,...,+). We regard these as chord diagrams to make clear the connection between our work and that of
[GYO02].

Theorem 6.1. Let T;,,(r) := {trees on [n + 1] with r leaves} and D,, . := {diagrams d = {c(i¢, je)}se[n]}- Then

#Tng1(r) = > #Z (Pa)-
d € Dy, : dhas r chords c(ij,4; + 1)

Proof. Observe that

2 #L(Pa) = Z #{good labelings of d}
de€Dype:d hasr de Dy :dhasr
chords ¢(ij,4; + 1) chords c¢(i;,4; + 1)
- _d(n) has r chords c(i;,4; + 1)
= {d(n) € Dne(n) : for some iy,...,i, € [0,n]

where we consider i; + 1 mod n + 1. By [GY02, Theorem 1.1}, we have a bijection between diagrams d € D,
with 7 chords of the form ¢(i;,4; + 1) for some iy,. .., i, € [0,n] with good labelings and elements of T, 1(r). O

Corollary 6.2. We have (n+1)""!' =3, 1,  #Z(Pa).

Proof. Let T,41 := {trees on [n+1]}. One has that

(n + 1)11—1 = #Tn+1
Z #Tn-i—l(r)
r=0
= Z Z #.2L(Pyq) (by Theorem 6.1)

20 4eD,.:d hasr
chords c(i;,7; + 1)
= > #Z(Pa).

deDy, e

O

6.2. Reddening sequences. In [Kell2], Keller proves that for any quiver @), any two reddening mutation se-
quences applied to @ produce isomorphic ice quivers. As mentioned in [Kell3], his proof is highly dependent on
representation theory and geometry, but the statement is purely combinatorial-we give a combinatorial proof of
this result for the linearly-ordered quiver Q.

Let R € EG(Q). A mutable vertex i € Ry is called green if there are no arrows j — i in R with j € [n+1,m].
Otherwise, 4 is called red. A sequence of mutations y;, o ---o u;, is reddening if all mutable vertices of the
quiver p; o--- 0 [ (@) are red. Recall that an isomorphism of quivers that fixes the frozen vertices is called a
frozen isomorphism. We now state the theorem.

Theorem 6.3. If yi; o---op;, and p;, o---opu;, are two reddening sequences of Q. for some € € {+,—}""1, then
there is a frozen isomorphism fi;, o -0 13, (Qe) = pj, © -+ 0 s, (Qe).
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Proof. Let p; o --- o u;, be any reddening sequence. Denote by C the c-matrix of p; o---o u11(©5)~ By
Corollary 3.15, C' corresponds to an oriented strand diagram 70 € Dn « with all chords of the form < (j,4) for
some ¢ and j satisfying ¢ < j. As 70 avoids the configurations described in Defintion 3.13, we conclude that
de={2(,i— 1)}ie[n) and C' = —1I,,. Since c-matrices are in bijection with ice quivers in EG(Q.) (see [NZ12,

Thm 1.2]) and since Q. is an ice quiver in EG(Q.) whose c-matrix is —I,,, we obtain the desired result. O

6.3. Noncrossing partitions and exceptional sequences. In this section, we give a combinatorial proof of
Ingalls’ and Thomas’ result that complete exceptional sequences are in bijection with maximal chains in the
lattice of noncrossing partitions [IT09]. We remark that their result is more general than that which we present
here. Throughout this section, we assume that @ has ¢ = (—, ..., —) and we regard the strand diagrams of Q.
as chord diagrams.

A partition of [n] is a collection 7 = {Bgq}aer € 2l of subsets of [n] called blocks that are nonempty,
pairwise disjoint, and whose union is [n]. We denote the lattice of set partitions of [n] by II,,. A set partition

= {Ba}aer € I, is called noncrossing if for any ¢ < j < k < ¢ where i,k € B,, and j,{ € B,,, one has
B., = B.,. We denote the lattice of noncrossing partitions of [n] by NC*(n).

Label the vertices of a convex n-gon S with elements of [n] so that reading the vertices of S counterclockwise
determines an increasing sequence mod n. We can thus regard m = {By}aer € NC*(n) as a collection of convex
hulls B, of vertices of S where B, has empty intersection with any other block By .

Let n = 5. The following partitions all belong to II5, but only 71, mo, 73 € NC*(5).

™ = {{1}7 {27 4, 5}> {3}}7 T2 = {{1’ 4}7 {27 3}7 {5}}5 T3 = {{17 2, 3}’ {47 5}}7 T4 = {{1’ 3, 4}’ {2’ 5}}
Below we represent the partitions 7'(‘1, ...,y as convex hulls of sets of vertices of a convex pentagon. We see from
this representation that 74 ¢ N C’A

W\\ V/ﬁ

Theorem 6.4. Let k € [n]. There is a bijection between Dy, (k) and the following chains in NC*(n + 1)

1y A k1. T = (Tj-1\{Ba, Bg}) L {Ba 1 Bgs}
{{{z}}wm <m << me (VOHn+ )t s 0T b B Bl o (B
In particular, when k = n, there is a bijection between D, .(n) and maximal chains in NC*(n + 1). We remark
that each chain described above is saturated (i.e. each inequality appearing in {{i}}ie[n+1] <71 <--- <7p isa
covering relation).

Proof. Let d(k) = {(c(ic,je),£)}eeir] € Dr,e(k). Define w1 := {{i}}icin41] € Hny1. Next, define mypy o =
(Tagy \{{ir + 1}, {71 + 1}}) w{ix + 1,51 + 1}. Now assume that 74 s has been defined for some s € [k]. Define
Tq(k),s+1 to be the partition obtained by merging the blocks of 74y, containing is + 1 and js + 1. Now define
FAR) = {ragey.e 5 € [ + 1)

It is clear that f(d(k)) is a chain in I, with the desired property as m; < mo in II,,41 if and only if o
is obtained from 71 by merging exactly two distinct blocks of 1. To see that each my;) s € N C*(n + 1) for all
s € [k +1], suppose a crossing of two blocks occurs in a partition appearing in f(d(k)). Let w4 s be the smallest
partition of f(d(k)) (with respect to the partial order on set partitions) with two blocks crossing blocks By and
B;. Without loss of generality, we assume that By € 74, s is obtained by merging the blocks By, , Ba, € T(k),s—1
containing is_1 + 1 and js—1 + 1, respectively. This means that d(k) has a chord c(is—_1, js—1) that crosses at least
one other chord of d(k). This contradicts that d(k) € Dy (k). Thus f(d(k)) is a chain in NC*(n + 1) with the
desired property.

Next, we define a map g that is the inverse of f. Let C = (m1 = {{i}}ic[nt1] < T2 < -++ < Tpy1) €
(NC®(n + 1))**1 be a chain where each partition in C satisfies m; = (7;_1\{Ba, Bs}) U {Ba 1 Bg} for some
B, # Bginmj_1. As mo = (mi\{{s1}, {t1}}) v {s1,t1}, define c(i1, j1) := ¢(s1 —1,t1 — 1) where we consider s; — 1
and t;1 —1 mod n+1. Assume s; < t1. If 1 is in a block of size 3 in 73, let ¢ denote the element of this block where
t # s1,t1. If ¢ satisfies s; < ¢ < t1, define c(i9, j2) := c¢(s1 — 1, — 1). Otherwise, define c(is, jo) := c(t; — 1, — 1).
If there is no block of size 3 in 73, define c(ig, j2) := c(s2 — 1,12 — 1) where {s2} and {t2} were singleton blocks in
7o and {sa2,t2} is a block in 3.

Now suppose we have defined ¢(i, j,-). Let B denote the block of .2 obtained by merging two blocks of 7,4 1.
If B is obtained by merging two singleton blocks {s;+1}, {tr+1} € Tri1, define c(iri1, ri1) = c(Spy1—1,tp 11 —1).
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Otherwise, B = By 1 By where By, By € m,.4.1. Now note that, up to rotation and up to adding or deleting elements
of [n+ 1] for By and Bg, By u By appears in .15 as follows.

Thus define ¢(iyy1, jri1) 1= c(s1 — 1,12 — 1). Finally, put g(C) := {(c(i¢, je), £) : € € [k]}.

We claim that g(C) has no crossing chords. Suppose (c(s;,t;),1) and (c¢(sj,t;),7) are crossing chords in g(C')
with ¢ < j and i,j € [k]. We further assume that

Jj=min{j € [i + 1,k] : (c(sj,tj), ') crosses (c(s;,t;),1) in g(C)}.

We observe that s; +1,¢; + 1 € By for some block B; € 7; and that s; + 1,¢; + 1 € By for some block By € mj41.
We further observe that s; + 1,¢; + 1 ¢ By otherwise, by the definition of the map g, the chords (c(s;, t;),4) and
(c(sj,t),7) would be noncrossing. Thus By, By € ;41 are distinct blocks that cross so 741 ¢ NC*(n +1). We
conclude that ¢(C') has no crossing chords so g(C) € Dy (k).

To complete the proof, we show that go f = 1p, (). The proof that f o g is the identity map is similar. Let
d(k) € Dg,c(k). Then f(d(k)) = {{i}}icfnt1] < ™1 < -+ < m where for any s € [k] we have

s = (ms—1\{Ba, Bs}) 1 {Ba, Bg}

where i,_1 + 1€ B, and j,—1 + 1 € Bz. Then we have

g(f(d(k))) = {e((ie +1) = 1, (e + 1) = 1), O) Yeerry = {(c(ie; Je), )} eepn-
(]

Corollary 6.5. If ¢ = (—,...,—), then the exceptional sequences of Q. are in bijection with saturated chains in
NC%(n + 1) of the form

. A ki1, ™ = (mj—1\{Ba, Bg}) u {Ba 1 Bg}
{{{z}}ze[nﬂ] <m <--<mpe(NC*(n+1)""": for some By, # By in 7,1 .

Example 6.6. Here we give examples of the bijection from the previous theorem with &k = 4.
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