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ABSTRACT. We introduce the intersection cohomology module of a matroid and prove that it sat-
isfies Poincaré duality, the hard Lefschetz theorem, and the Hodge–Riemann relations. As applica-
tions, we obtain proofs of Dowling and Wilson’s Top-Heavy conjecture and the nonnegativity of the
coefficients of Kazhdan–Lusztig polynomials for all matroids.
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1. INTRODUCTION

1.1. Results. A matroid M on a finite set E is a nonempty collection of subsets of E, called flats
of M, that satisfies the following properties:

‚ If F1 and F2 are flats, then their intersection F1 X F2 is a flat.

‚ If F is a flat, then any element inEzF is in exactly one flat that is minimal among the flats strictly
containing F .

For notational convenience, we assume throughout that M is loopless:

‚ The empty subset of E is a flat.

We write LpMq for the lattice of all flats of M. Every maximal flag of proper flats of M has the same
cardinality rk M, called the rank of M. For any nonnegative integer k, we write LkpMq to denote
the set of rank k flats of M. A matroid can be equivalently defined in terms of its independent
sets, circuits, or the rank function. For background in matroid theory, we refer to [Oxl11] and
[Wel76].

Let Γ be a finite group acting on M. By definition, Γ permutes the elements of E in such a way
that it sends flats to flats.

Theorem 1.1. The following holds for any k ď j ď rk M´ k.

(1) The cardinality of LkpMq is at most the cardinality of LjpMq.

(2) There is an injective map ι : LkpMq Ñ LjpMq satisfying F ď ιpF q for all F P LkpMq.

(3) There is an injective map QLkpMq Ñ QLjpMq of permutation representations of Γ.1

The first two parts of Theorem 1.1 were conjectured by Dowling and Wilson [DW74, DW75],
and have come to be known as the Top-Heavy conjecture. Its best known instance is the de
Bruijn–Erdős theorem on point-line incidences in projective planes [dBE48]:

Every finite set of points E in a projective plane determines at least |E| lines, unless E is
contained in a line. In other words, if E is not contained in a line, then the number of lines
in the plane containing at least two points in E is at least |E|.

When LpMq is a Boolean lattice or a projective geometry, Theorem 1.1 is a classical result; see for
example [Sta18, Corollary 4.8 and Exercise 4.4]. In these cases, the second statement of Theorem 1.1

1 One might hope to combine the last two parts of Theorem 1.1 by asking the map ι to be Γ-equivariant, but this is
not possible, even if we drop the condition that F ď ιpF q. For example, when M is the uniform matroid of rank 3 on 4
elements, there is no S4-equivariant map from L1

pMq to L2
pMq.
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implies that these lattices admit symmetric chain decompositions, and hence have the Sperner
property:

The maximal number of pairwise incomparable subsets of rns is the maximum among the bi-
nomial coefficients

`

n
k

˘

. Similarly, the maximal number of pairwise incomparable subspaces
of Fnq is the maximum among the q-binomial coefficients

`

n
k

˘

q
.

Other earlier versions of Theorem 1.1, for specific classes of matroids or small values of k, can be
found in [Mot51, BK68, Gre70, Mas72, Her73, Kun79, Kun86, Kun93, Kun00]. In [HW17], Theorem
1.1 was proved for matroids realizable over some field. See Section 1.3 for an overview of that
proof. Although realizable matroids provide the primary motivation for the definition of a ma-
troid, almost all matroids are not realizable over any field. More precisely, the portion of matroids
on the ground set rns that are realizable over some field goes to zero as n goes to infinity [Nel18].

Our proof of Theorem 1.1 is closely related to Kazhdan–Lusztig theory of matroids, as devel-
oped in [EPW16]. For any flat F of M, we define the localization of M at F to be the matroid
MF on the ground set F whose flats are the flats of M contained in F . Similarly, we define the
contraction of M at F to be the matroid MF on the ground set EzF whose flats are GzF for flats G
of M containing F .2 We also consider the characteristic polynomial

χMptq–
ÿ

IĎE

p´1q|I|tcrk I ,

where crk I is the corank of I in M. According to [EPW16, Theorem 2.2], there is a unique way
to assign a polynomial PMptq to each matroid M, called the Kazhdan–Lusztig polynomial of M,
subject to the following three conditions:

(a) If the rank of M is zero, then PMptq is the constant polynomial 1.

(b) For every matroid M of positive rank, the degree of PMptq is strictly less than rk M{2.

(c) For every matroid M, we have trk MPMpt
´1q “

ÿ

FPLpMq

χMF ptq ¨ PMF
ptq.

Alternatively [BV20, Theorem 2.2], one may define Kazhdan–Lusztig polynomials of matroids by
replacing the third condition above with the following condition not involving χMptq:

(c)’ For every matroid M, the polynomial ZMptq–
ÿ

FPLpMq

trkFPMF
ptq satisfies the identity

trk MZMpt
´1q “ ZMptq.

The polynomial ZMptq, called the Z-polynomial of M, was introduced in [PXY18] using the first
definition of PMptq, where it was shown to satisfy the displayed identity.

2In [EPW16], as well as several other references on Kazhdan–Lusztig polynomials of matroids, the localization is
denoted MF and the contraction is denoted MF . Our notational choice here is consistent with [AHK18] and [BHM`20].
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Theorem 1.2. The following holds for any matroid M.

(1) The polynomial PMptq has nonnegative coefficients.

(2) The polynomial ZMptq is unimodal: The coefficient of tk in ZMptq is less than or equal to the
coefficient of tk`1 in ZMptq for all k ă rk M{2.

The first part of Theorem 1.2 was conjectured in [EPW16, Conjecture 2.3], where it was proved
for matroids realizable over some field using l-adic étale intersection cohomology theory. See
Section 1.3 for an overview of that proof. For sparse paving matroids, a combinatorial proof of the
nonnegativity was given in [LNR20].

Kazhdan–Lusztig polynomials of matroids are special cases of Kazhdan–Lusztig–Stanley poly-
nomials [Sta92, Pro18]. Several important families of Kazhdan–Lusztig–Stanley polynomials turn
out to have nonnegative coefficients, including classical Kazhdan–Lusztig polynomials associated
with Bruhat intervals [EW14] and g-polynomials of convex polytopes [Kar04, BL05]. For more on
this analogy, see Section 1.4.

For a finite group Γ acting on M, one can define the equivariant Kazhdan–Lusztig polynomial
PΓ

Mptq and the equivariant Z-polynomial ZΓ
Mptq; see Appendix A for formal definitions. These

are polynomials with coefficients in the ring of virtual representations of Γ, with the property
that taking dimensions recovers the ordinary polynomials [GPY17, PXY18]. Our proof shows the
following strengthening of Theorem 1.2.

Theorem 1.3. The following holds for any matroid M and any finite group Γ acting on M.

(1) The polynomial PΓ
Mptq has nonnegative coefficients: The coefficients of PΓ

Mptq are isomorphism
classes of honest, rather than virtual, representations of Γ.

(2) The polynomial ZΓ
Mptq is unimodal: The coefficient of tk in ZΓ

Mptq is isomorphic to a subrepre-
sentation of the coefficient of tk`1 in ZΓ

Mptq for all k ă rk M{2.

Theorem 1.3 specializes to Theorem 1.2 when we take Γ to be the trivial group. The first part of
Theorem 1.3 was conjectured in [GPY17, Conjecture 2.13], where it was proved for matroids that
are Γ-equivariantly realizable over some field.3 For uniform matroids, a combinatorial proof of
the equivariant nonnegativity was given in [GPY17, Section 3].

By [GX20, Theorem 1.2], there is a unique way to assign a polynomial QMptq to each matroid M,
called the inverse Kazhdan–Lusztig polynomial of M, subject to the following three conditions:

(a) If the rank of M is zero, then QMptq is the constant polynomial 1.

3It is much easier to construct matroids that are not Γ-equivariantly realizable than it is to construct matroids that
are not realizable. For example, the uniform matroid of rank 2 on 4 elements is realizable over any field with at least
three elements, but it is not S4-equivariantly realizable over any field.
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(b) For every matroid M of positive rank, the degree of QMptq is strictly less than rk M{2.

(c) For every matroid M, we have p´tqrk MQMpt
´1q “

ÿ

FPLpMq

p´1qrk MF
QMF ptq ¨ trk MFχMF

pt´1q.

We also prove the following result conjectured in [GX20, Conjecture 4.1].

Theorem 1.4. The polynomial QMptq has nonnegative coefficients.

In fact, our proof shows that the coefficients of the equivariant inverse Kazhdan–Lusztig poly-
nomial QΓ

Mptq defined in Appendix A are isomorphism classes of honest, rather than virtual, rep-
resentations of Γ.

1.2. Proof strategy. We now provide an outline of the proofs of Theorems 1.1, 1.2, and 1.3. The
algebro-geometric motivations for these arguments will appear in Section 1.3.

For any matroid M of rank d, consider the graded Möbius algebra

HpMq–
à

FPLpMq

QyF .

The grading is defined by declaring the degree of the element yF to be rkF , the rank of F in M.
The multiplication is defined by the formula

yF yG –

$

&

%

yF_G if rkF ` rkG “ rkpF _Gq,

0 if rkF ` rkG ą rkpF _Gq,

where _ stands for the join of flats in the lattice LpMq. Let CHpMq be the augmented Chow ring
of M, introduced in [BHM`20]. We will review the definition of CHpMq in Section 2, but for now
it will suffice to know the following three things:

‚ CHpMq contains HpMq as a graded subalgebra [BHM`20, Proposition 2.15].

‚ CHpMq is equipped with a degree isomorphism deg : CHdpMq Ñ Q [BHM`20, Definition 2.12].

‚ By the Krull–Schmidt theorem, up to isomorphism, there is a unique indecomposable graded
HpMq-module direct summand IHpMq Ď CHpMq that contains HpMq.4

In this introduction, we temporarily define the intersection cohomology of M to be the graded
HpMq-module IHpMq. This defines the intersection cohomology of M up to isomorphism of graded
HpMq-modules. In Section 3, we will construct a canonical submodule IHpMq Ď CHpMq that is
preserved by all symmetries of M. The construction of IHpMq as an explicit submodule of CHpMq,

4For the Krull–Schmidt theorem, see, for example, [Ati56, Theorem 1]. By [CF82, Corollary 2] or [GG82, Theorem
3.2], the indecomposability in the category of graded HpMq-modules implies the indecomposability in the category of
HpMq-modules. Thus, the intersection cohomology of M is an indecomposable module over HpMq.
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or more generally the construction of the canonical decomposition of CHpMq as a graded HpMq-
module, will be essential in our proofs of the main results but not in their statements.

We fix any decomposition of the graded HpMq-module CHpMq as above, and consider any pos-
itive linear combination

` “
ÿ

FPL1pMq

cF yF , cF is positive for every rank 1 flat F of M.

Our central result is that IHpMq satisfies the Kähler package with respect to ` P H1pMq.

Theorem 1.5. The following holds for any matroid M of rank d.

(1) (Poincaré duality theorem) For every nonnegative k ď d
2 , the bilinear pairing

IHkpMq ˆ IHd´kpMq ÝÑ Q, pη1, η2q ÞÝÑ degpη1η2q

is non-degenerate.

(2) (Hard Lefschetz theorem) For every nonnegative k ď d
2 , the multiplication map

IHkpMq ÝÑ IHd´kpMq, η ÞÝÑ `d´2kη

is an isomorphism.

(3) (Hodge–Riemann relations) For every nonnegative k ď d
2 , the bilinear form

IHkpMq ˆ IHkpMq ÝÑ Q, pη1, η2q ÞÝÑ p´1qk degp`d´2kη1η2q

is positive definite on the kernel of multiplication by `d´2k`1.

We now show how Theorem 1.5 implies Theorem 1.1.

Proof of Theorem 1.1, assuming Theorem 1.5. It follows from the hard Lefschetz theorem that the mul-
tiplication map `j´k : IHkpMq Ñ IHjpMq is injective for j ď d´ k. Since HpMq Ď CHpMq, we have
HpMq Ď IHpMq. After restricting the multiplication map to the HpMq-submodule HpMq Ď IHpMq,
we obtain an injection

`j´k : HkpMq ÝÑ HjpMq.

Taking ` to be the sum of all yF over the rank 1 flats F , we obtain part (3). If we write this injection
as a matrix in terms of the natural bases, the matrix is supported on the pairs satisfying F ď G.
Part (2) follows from the existence of a nonzero term in a maximal minor for this matrix. Clearly,
part (1) follows from either part (2) or part (3). �

The following propositions will be key ingredients in the proof of Theorem 1.2. We write m for
the graded maximal ideal of HpMq, and write IHpMq∅ for the graded vector space IHpMq{m IHpMq.

Proposition 1.6. For every matroid M of positive rank, IHpMq∅ vanishes in degrees ě rk M{2.
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Proposition 1.7. For all nonnegative k, there is a canonical graded vector space isomorphism

mk IHpMq{mk`1 IHpMq –
à

FPLkpMq

IHpMF q∅r´ks.

For the content of the word “canonical” in Proposition 1.7, we refer to the explicit construction of
the isomorphism in Section 12.3. For a geometric description in the realizable case, see Section 1.3.
When a finite group Γ acts on M, it acts on the intersection cohomology of M, and the isomorphism
is that of Γ-representations

mk IHpMq{mk`1 IHpMq –
à

FPLkpMq

|ΓF |

|Γ|
IndΓ

ΓF
IHpMF q∅r´ks,

where ΓF Ď Γ is the subgroup of elements fixing F .5

Proof of Theorems 1.2 and 1.3, assuming Theorem 1.5 and Propositions 1.6 and 1.7. We define polynomi-
als

P̃Mptq–
ÿ

kě0

dim IHkpMq∅ t
k and Z̃Mptq–

ÿ

kě0

dim IHkpMq tk.

We argue P̃Mptq “ PMptq and Z̃Mptq “ ZMptq by induction on the rank of M. The statement is
clear when the rank is zero, so assume that M has positive rank and that the statement holds for
matroids of strictly smaller rank. Taking Poincaré polynomials of the graded vector spaces in
Proposition 1.7 and summing over all k, we get

Z̃Mptq “
ÿ

FPLpMq

trkF P̃MF
ptq.

When combined with our inductive hypothesis, the above gives

Z̃Mptq “ P̃Mptq `
ÿ

F‰∅
trkFPMF

ptq.

On the other hand, by Theorem 1.5 and Proposition 1.6, we have

Z̃Mptq “ trk MZ̃Mpt
´1q and deg P̃Mptq ă rk M{2

The desired identities now follow from the second definition of Kazhdan–Lusztig polynomials of
matroids given above [BV20, Theorem 2.2].

The nonnegativity of the coefficients of PMptq is immediate from the fact that it is the Poincaré
polynomial of a graded vector space. The unimodality of ZMptq follows from the hard Lefschetz
theorem for IHpMq. All of the steps of this argument still hold when interpreted equivariantly with
respect to any group of symmetries of M by Lemma A.1, Definition A.3, and Corollary A.5. �

5One may eliminate the fraction |ΓF |

|Γ|
at the cost of choosing one representative of each Γ-orbit in LkpMq.
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Remark 1.8. The explicit construction of IHpMq as a submodule of CHpMq appears in Section 3, but
the fact that it is an indecomposable summand of CHpMq is not established until much later. It
follows from Proposition 6.6, which can only be applied after we have proved Theorem 1.5. See
Remark 6.1 for why this is the case.

Remark 1.9. The astute reader will note that the only part of Theorem 1.5 that appears in the appli-
cations is the hard Lefschetz theorem. However, we know of no way to prove the hard Lefschetz
theorem by itself. Instead, we roll all three statements up into a grand induction. See Remark 1.13
for more on this philosophy.

Remark 1.10. We have not yet commented on our strategy for proving Theorem 1.4. This proof will
also rely on Theorem 1.5, and will proceed by interpreting QMptq as the graded multiplicity of the
trivial graded HpMq-module in a complex of HpMq-modules called the small Rouquier complex.
See Sections 4.2 and 7.6 for more details.

1.3. The realizable case. We now give the geometric motivation for the statements in Sections 1.1
and 1.2, and in particular review the proofs of Theorems 1.1 and 1.2 for realizable matroids.

Let V be a vector space of dimension d over a field F, let E be a finite set, and let σ : E Ñ V _

be a map whose image spans the dual vector space V _. The collection of subsets S Ď E for which
σ is injective on S and σpSq is a linearly independent set in V _ forms the independent sets of a
matroid M of rank d. Any matroid which arises in this way is called realizable over F, and σ

is called a realization of M over F.6 We continue to assume that M is loopless. In terms of the
realization σ, this means that the image of σ does not contain the zero vector.

For any flat F of M, let VF Ď V be the subspace perpendicular to tσpequePF , and let V F be the
quotient space V {VF . Then we have canonical maps

σF : F Ñ pV F q_ and σF : EzF Ñ pVF q
_

realizing the localization MF and the contraction MF , respectively.

Consider the linear map V Ñ FE whose e-th coordinate is given by σpeq. The assumption that
the image of σ spans V _ implies that this map is injective. The decomposition P1

F “ F\t8u gives
an embedding of FE into pP1

Fq
E , and we let Y Ď pP1

Fq
E denote the closure of the image of V . This

projective variety is called the Schubert variety of σ. The terminology is chosen to suggest that Y
has many similarities to classical Schubert varieties. It has a stratification by affine spaces, whose
strata are the orbits of the additive group V on Y , indexed by flats of M. For any flat F of M, let

UF – tp P Y | pe “ 8 if and only if e R F u.

6When a finite group Γ acts on M, we say that M is Γ-equivariantly realizable over F if there is a Γ-equivariant map
σ : E Ñ V _ for some representation V of Γ over F.
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For example, UE is the vector space V and U∅ is the point 8E . More generally, UF is isomorphic
to V F , and these subvarieties form a stratification of Y with UF contained in the closure of UG if
and only if F is contained in G [PXY18, Lemmas 7.5 and 7.6].

The Schubert variety Y is singular, and it admits a canonical resolutionX called the augmented
wonderful variety, obtained by first blowing up the point U∅, then the proper transforms of the
closures of UF for all rank 1 flats F , and so on. A different description of X as an iterated blow-up
of a projective space appears in [BHM`20, Section 2.4].

For the remainder of this section, we will assume for simplicity that F “ C; see Remark 1.11 for
a discussion of what happens over other fields. The rings and modules introduced in Section 1.2
have the following interpretations in terms of the varieties X and Y . The graded Möbius algebra
HpMq is isomorphic to the rational cohomology ring H‚pY q [HW17, Theorem 14], and the aug-
mented Chow ring CHpMq is isomorphic to the rational Chow ring of X , or equivalently to the
rational cohomology ring H‚pXq. By applying the decomposition theorem to the map from X to
Y , we find that the intersection cohomology IH‚pY q is isomorphic as a graded H‚pY q-module to
a direct summand of H‚pXq.7 A slight extension of an argument of Ginzburg [Gin91] shows that
IH‚pY q is indecomposable as an H‚pY q-module, which implies that it coincides with our module
IHpMq.8 Theorem 1.5 is a standard result in Hodge theory for singular projective varieties.

For each flat F of M, let H‚pICY,F q denote the cohomology of the stalk of the intersection co-
homology complex ICY at a point in UF . The restriction map on global sections from IH‚pY q

to H‚pICY,∅q descends to IH‚pY q∅, and another application of the result of [Gin91] implies that
the induced map from IH‚pY q∅ to H‚pICY,∅q is an isomorphism. A fundamental property of the
intersection cohomology sheaf ICY is that, if the dimension d of Y is positive, then the stalk coho-
mology group H2kpICY,F q vanishes for k ě d. This proves Proposition 1.6 in the realizable case.

Let YF be the Schubert variety associated with the realization σF of MF . We have a canonical
inclusion YF Ñ Y , which is a normally nonsingular slice to the stratum UF . Thus it induces an
isomorphism from H‚pICY,F q to H‚pICYF ,∅q, see [Pro18, Proposition 4.11]. Let jF : UF Ñ Y denote
the inclusion of the stratum UF . Our stratification of Y induces a spectral sequence with

Ep,q1 “
à

FPLppMq

Hp`q
c pj˚F ICY q

7All of these cohomology rings and intersection cohomology groups of varieties vanish in odd degree, and our
isomorphisms double degree. So H1

pMq – H2
pY q, CH1

pMq – H2
pXq, IH1

pMq – IH2
pY q, and so on.

8To be precise, two hypotheses of [Gin91] are not satisfied by Y : it is not the closure of a Białynicki-Birula cell for
a torus action on a smooth projective variety, and the natural torus which acts is one-dimensional, so it is not possible
to find an attracting cocharacter at each fixed point. However, each fixed point has an affine neighborhood with an
attracting action of the multiplicative group, and this is enough.



10 TOM BRADEN, JUNE HUH, JACOB P. MATHERNE, NICHOLAS PROUDFOOT, AND BOTONG WANG

that converges to IH‚pY q. The summands of Ep,q1 satisfy

Hp`q
c pj˚F ICY q –

´

H‚pICY,F q bH‚cpUF q
¯p`q

–

´

H‚pICY,F qr´2ps
¯p`q

– Hq´ppICYF ,∅q.

Since H‚pICYF ,∅q vanishes in odd degree, our spectral sequence degenerates at theE1 page [PXY18,
Section 7]. This means that IH‚pY q vanishes in odd degree, and that the degree 2k part of the
graded vector space mp IH‚pY q{mp`1 IH‚pY q is isomorphic to

Ep,2k´p8 “ Ep,2k´p1 –
à

FPLppMq

H2pk´pqpICYF ,∅q –
à

FPLppMq

IH2pk´pqpYF q∅.

This proves Proposition 1.7 in the realizable case.

Remark 1.11. If the field F is not equal to the complex numbers, then we can mimic all of the geo-
metric arguments in this section using l-adic étale cohomology for some prime l not equal to the
characteristic of F. In this setting there is no geometric analogue of the Hodge–Riemann relations,
so Hodge theory does not give us the full Kähler package of Theorem 1.5. It is interesting to note
that Theorem 1.5 gives us a truly new result for matroids that are realizable only in positive char-
acteristic. Namely, it says that there is a rational form for the l-adic étale intersection cohomology
of the Schubert variety for which the Hodge–Riemann relations hold. We suspect that IHpMq is a
Chow analogue of the intersection cohomology of Y .

Remark 1.12. If one wants to write down a maximally streamlined proof of Theorem 1.1 for realiz-
able matroids, it is not necessary to know that H‚pY q is isomorphic to the graded Möbius algebra
of M, and it is not necessary to consider the augmented wonderful variety X or the augmented
Chow ring of M. One considers IH‚pY q as a module over H‚pY q and applies the same argument
outlined in Section 1.2. The statements that IH‚pY q contains H‚pY q as a submodule, that H‚pY q has
a basis indexed by flats, and that the matrix for the multiplication by a power of an ample class in
this basis is supported on pairs F ď G follow from [BE09, Theorem 2.1, Theorem 3.1, and Lemma
5.1]. For the proof of Theorem 1.2, we need to know that the cohomology groups H‚pICY,F q van-
ish in odd degree in order to conclude that the spectral sequence degenerates. To see this, we can
either embed IH‚pY q in H‚pXq as in the text above, or we can rely on an inductive argument as in
[Pro18, Theorem 3.6].

1.4. Kazhdan–Lusztig–Stanley polynomials. In this section, we will discuss two antecedents to
our work in the context of Kazhdan–Lusztig–Stanley theory. Let P be a locally finite ranked poset.
For all x ď y P P , let rxy – rk y ´ rkx. A P -kernel is a collection of polynomials κxyptq P Zrts for
each x ď y P P satisfying the following conditions:

‚ For all x P P , κxxptq “ 1.

‚ For all x ď y P P , deg κxyptq ď rxy.
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‚ For all x ă z P P ,
ÿ

xďyďz

trxyκxypt
´1qκyzptq “ 0.

Given such a collection of polynomials, Stanley [Sta92] showed that there exists a unique collection
of polynomials fxyptq P Zrts for each x ď y P P satisfying the following conditions:

‚ For all x P P , fxxptq “ 1.

‚ For all x ă y P P , deg fxyptq ă rxy{2.

‚ For all x ď z P P , trxzfxzpt´1q “
ÿ

xďyďz

κxyptqfyzptq.

The polynomials fxyptq are called Kazhdan–Lusztig–Stanley polynomials.

The first motivation for this construction comes from classical Kazhdan–Lusztig polynomials.
If we take the poset to be a Coxeter group W equipped with the Bruhat order and the W -kernel
to be the R-polynomials Rxyptq, then the polynomials fxyptq are called Kazhdan–Lusztig polyno-
mials. These polynomials were introduced by Kazhdan and Lusztig in [KL79], where they were
conjectured to have nonnegative coefficients. This was proved for Weyl groups in [KL80] by in-
terpreting fxyptq as the Poincaré polynomial for a stalk of the intersection cohomology sheaf of
a classical Schubert variety. For arbitrary Coxeter groups, the conjecture remained open for 34

years before it was proved by Elias and Williamson [EW14], who used Soergel bimodules as a
combinatorial replacement for intersection cohomology groups of classical Schubert varieties.

The second motivation for this definition comes from convex polytopes. Let ∆ be a convex poly-
tope, and let P be the poset of faces of ∆, ordered by reverse inclusion and ranked by codimension,
with the convention that the codimension of the empty face is dim ∆ ` 1. This poset is Eulerian,
which means that the polynomials pt ´ 1qrxy form a P -kernel. The polynomial g∆ptq – f∆∅ptq

is called the g-polynomial of ∆. When ∆ is rational, this polynomial can be shown to have non-
negative coefficients by interpreting it as the Poincaré polynomial for a stalk of the intersection
cohomology sheaf of a toric variety [DL91, Fie91]. For arbitrary convex polytopes, nonnegativity
of the coefficients of the g-polynomial was proved 13 years later by Karu [Kar04], who used the
theory of combinatorial intersection cohomology of fans [BBFK02, BL03, Bra06] as a replacement
for intersection cohomology groups of toric varieties.

In our setting, we consider the ranked poset LpMq along with the LpMq-kernel consisting of the
characteristic polynomials χFGptq – χMG

F
ptq, and we find that f∅Eptq is equal to the Kazhdan–

Lusztig polynomial PMptq. When M is realizable, this polynomial can be shown to have non-
negative coefficients by interpreting it as the Poincaré polynomial for a stalk of the intersection
cohomology sheaf of the Schubert variety Y , as explained in Section 1.3. Theorem 1.2 is obtained
by using IHpMq as a replacement for the intersection cohomology group of Y .
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Remark 1.13. It is reasonable to ask to what extent these three nonnegativity results can be uni-
fied. In the geometric setting (Weyl groups, rational polytopes, realizable matroids), it is possible
to write down a general theorem that has each of these results as a special case [Pro18, Theorem
3.6]. However, the problem of finding algebraic or combinatorial replacements for the intersection
cohomology groups of stratified algebraic varieties is not one for which we have a general solu-
tion. Each of the three theories described above involves numerous details that are unique to that
specific case. The one insight that we can take away is that, while the hard Lefschetz theorem is
typically the main statement needed for applications, it is always necessary to prove Poincaré du-
ality, the hard Lefschetz theorem, and the Hodge–Riemann relations together as a single package.

Remark 1.14. The analogue of Theorem 1.1 for Weyl groups appears in [BE09], and for general
Coxeter groups (using Soergel bimodules) in [MS20]. There is no analogous result for convex
polytopes because toric varieties associated with non-simple polytopes do not in general admit
stratifications by affine spaces.

Remark 1.15. For a locally finite poset P , consider the incidence algebra

IpP q–
ź

xďyPP

Zrts, where puvqxzptq–
ÿ

xďyďz

uxyptqvyzptq for u, v P IpP q.

An element h P IpP q has an inverse, left or right, if and only if hxxptq “ ˘1 for all x P P . In this
case, the left and right inverses are unique and they coincide [Pro18, Lemma 2.1]. In terms of the
incidence algebra, the inverse Kazhdan–Lusztig polynomial of M can be interpreted as

QMptq “ p´1qrk Mf´1
∅Eptq,

where f is the Kazhdan–Lusztig polynomial viewed as an element of IpLpMqq. We note that the
analogous constructions for finite Coxeter groups and convex polytopes do not give us anything
new. Specifically, for a finite Coxeter group, we have

p´1qrxyf´1
xy ptq “ fpw0yqpw0xqptq,

where w0 PW is the longest word [Pro18, Example 2.12]. For a convex polytope, we have

p´1qdim ∆`1f´1
∆∅ptq “ g∆˚ptq,

where ∆˚ is the dual polytope of ∆ [Pro18, Example 2.14]. The explanation for these statements
is that the corresponding P -kernels are alternating [Pro18, Proposition 2.11], which means that
p´tqrxyκxypt

´1q “ κxyptq. The same is not true for characteristic polynomials, which is why inverse
Kazhdan–Lusztig polynomials of matroids are fundamentally different from ordinary Kazhdan–
Lusztig polynomials of matroids.
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1.5. Outline. In Section 2, we recall the definitions of the Chow ring and the augmented Chow
ring of a matroid, then we review properties established in [BHM`20] of various pushforward and
pullback maps between these rings. In Section 3, we define the intersection cohomology modules
of matroids, explain how these modules behave under the pullback and pushforward maps, and
define the host of statements that make up our main inductive proof.

With all the key players defined, we provide Section 4 as a guide to the inductive proof of the
main theorem of the paper, Theorem 3.16. No definitions or proofs are given here, and the section
is meant only to provide intuition for the structure of the proof. This section may be skipped, but
we hope that the reader benefits from flipping back to this section to “see what the authors were
thinking” as they read the rest of the paper.

The proof of the main theorem begins in Section 5 and continues for the remainder of the paper.
We use Sections 5 and 6 to establish some general results about modules over the graded Möbius
algebra, and in particular about the intersection cohomology modules. The results in Section 5 are
not inductive in nature and are established outside of the inductive loop. Section 7 is dedicated to
introducing and studying the so-called Rouquier complexes; as in [EW14], we use these to prove a
version of weak Lefschetz, which for us is a certain vanishing condition for the socles of our inter-
section cohomology modules. In Section 7.6, we explain how Theorem 3.16 can be used to deduce
Theorem 1.4. Section 8 studies the Poincaré pairings on various HpMq-submodules of CHpMq

and how they behave under various linear-algebraic operations such as taking tensor products.
Sections 9 and 10 use the semi-small decomposition developed in [BHM`20] to perform an induc-
tion involving the deletion Mzi of a single element i from M. Section 11 explores how the hard
Lefschetz theorem and Hodge–Riemann relations behave when deforming Lefschetz operators.
Section 12 puts all of the results from the previous sections together to finish the inductive proof
of Theorem 3.16, from which Theorems 1.1, 1.2, and 1.5 follow. Finally, the appendix establishes
the framework needed to deduce Theorem 1.3 as well as the equivariant part of Theorem 1.1.

Acknowledgements. The authors would like to thank both the Institute for Advanced Study and
the Korea Institute for Advanced Study for their hospitality during the preparation of this paper.

2. THE CHOW RING AND THE AUGMENTED CHOW RING OF A MATROID

For the remainder of this paper, we write d for the rank of M and n for the cardinality of E. We
continue to assume that M is a loopless matroid on E. Under this assumption, n is positive if and
only if d is positive.

2.1. Definitions of the rings. We recall the definitions of the Chow ring of a matroid introduced
in [FY04] and the augmented Chow ring of a matroid introduced in [BHM`20]. To each matroid
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M on E, we assign two polynomial rings with rational coefficients

SM – QrxF |F is a nonempty proper flat of Ms and

SM – QrxF |F is a proper flat of Ms bQryi | i is an element of Es.

Definition 2.1. The Chow ring of M is the quotient algebra

CHpMq– SM{pIM ` JMq,

where IM is the ideal generated by the linear forms
ÿ

i1PF

xF ´
ÿ

i2PF

xF , for every pair of distinct elements i1 and i2 of E,

and JM is the ideal generated by the quadratic monomials

xF1xF2 , for every pair of incomparable nonempty proper flats F1 and F2 of M.

When d is positive, the Chow ring of M is the Chow ring of an pn´1q-dimensional smooth toric
variety defined by a pd´ 1q-dimensional fan ΠM, called the Bergman fan of M [FY04, Theorem 3].

Definition 2.2. The augmented Chow ring of M is the quotient algebra

CHpMq– SM{pIM ` JMq,

where IM is the ideal generated by the linear forms

yi ´
ÿ

iRF

xF , for every element i of E,

and JM is the ideal generated by the quadratic monomials

xF1xF2 , for every pair of incomparable proper flats F1 and F2 of M, and

yi xF , for every element i of E and every proper flat F of M not containing i.

The augmented Chow ring of M is the Chow ring of an n-dimensional smooth toric variety de-
fined by a d-dimensional fan ΠM, called the augmented Bergman fan of M [BHM`20, Proposition
2.10]. Note that the Chow ring is isomorphic to the quotient of the augmented Chow ring by the
ideal generated by all the elements yi, and that two elements yi and yj are equal if and only if i
and j are contained in the same rank 1 flat of M.

By [BHM`20, Proposition 2.15], there is a unique graded algebra homomorphism

HpMq ÝÑ CHpMq, yi ÞÝÑ yi,

where i denotes the unique rank 1 flat of M containing an element i of E, and this homomorphism
is injective. Thus, we may identify the graded Möbius algebra with the subalgebra of the aug-
mented Chow ring generated by the yis. One of the principal goals of this paper is to understand
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the HpMq-module structure of CHpMq. The Chow ring CHpMq will play an important supporting
role.

The description of CHpMq in terms of ΠM reveals that CHpMq vanishes in degrees ě d. Sim-
ilarly, the description of CHpMq in terms of ΠM reveals that CHpMq vanishes in degrees ą d.
Furthermore, one can construct distinguished isomorphisms from the graded pieces CHd´1pMq

and CHdpMq to Q.

Definition 2.3. Let M be a loopless matroid of rank d.

(1) When d is positive, we define the degree map for CHpMq to be the unique linear map

degM : CHd´1pMq ÝÑ Q,
ź

FPF

xF ÞÝÑ 1,

where F is any complete flag of nonempty proper flats of M.

(2) We define the degree map for CHpMq to be the unique linear map

degM : CHdpMq ÝÑ Q,
ź

FPF

xF ÞÝÑ 1,

where F is any complete flag of proper flats of M.

By [BHM`20, Proposition 2.8], these maps are unique, well-defined, and bijective.

2.2. The pullback and pushforward maps. In this subsection, we assume that E is nonempty.
Before recalling the definitions of the pullback and pushforward maps, we need the Chow classes
α, α, and β, defined as

α “ αM –
ÿ

G

xG P CH1pMq,

where the sum is over all proper flats G of M, and

α “ αM –
ÿ

iPG

xG P CH1pMq,

where the sum is over all nonempty proper flats G of M containing a given element i in E, and

β “ βM –
ÿ

iRG

xG P CH1pMq,

where the sum is over all nonempty proper flatsG of M not containing a given element i inE. The
linear relations defining CHpMq show that α and β do not depend on the choice of i. Note that the
natural map from CHpMq to CHpMq takes α to α and ´x∅ to β.

Let F be a proper flat of M. The following definition is motivated by the geometry of augmented
Bergman fans [BHM`20, Propositions 2.17 and 2.18].
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Definition 2.4. The pullback ϕFM is the unique surjective graded algebra homomorphism

CHpMq ÝÑ CHpMF q b CHpMF q

that satisfies the following properties:

‚ If G is a flat properly contained in F , then ϕFMpxGq “ 1b xG.

‚ If G is a flat properly containing F , then ϕFMpxGq “ xGzF b 1.

‚ If G is a flat incomparable to F , then ϕFMpxGq “ 0.

‚ If G is the flat F , then ϕFMpxF q “ ´1b αMF ´ βMF
b 1.

The pushforward ψFM is the unique degree one linear map

CHpMF q b CHpMF q ÝÑ CHpMq

that maps the monomial
ś

F 1 xF 1zF b
ś

F 2 xF 2 to the monomial xF
ś

F 1 xF 1
ś

F 2 xF 2 .

Of particular importance will be the pullback ϕ∅
M, which is a surjective graded algebra homo-

morphism from CHpMq to CHpMq. The following results can be found in [BHM`20, Section 2].

Proposition 2.5. The pullback ϕFM and the pushforward ψFM have the following properties:

(1) If i is an element of F , then ϕFMpyiq “ 1b yi.

(2) If i is not an element of F , then ϕFMpyiq “ 0.

(3) The equality ϕFMpαMq “ αMF
b 1 holds.

(4) The pushforward ψFM is injective.

(5) The pushforward ψFM commutes with the degree maps: degMF
b degMF “ degM ˝ ψ

F
M.

(6) The pushforward ψFM is a homomorphism of CHpMq-modules:

ηψFMpξq “ ψFM
`

ϕFMpηqξ
˘

for any η P CHpMq and ξ P CHpMF q b CHpMF q.

We use the pullback map to make CHpMF q b CHpMF q into a module over CHpMq and HpMq.
By part (1) of the above proposition, HpMq acts only on the second tensor factor.

For later use, we record here the following immediate consequence of Proposition 2.5.

Lemma 2.6. For any η P CHpMq and ξ P CHpMF q b CHpMF q, we have

degM

`

ηψFMpξq
˘

“ degMF
b degMF

`

ϕFMpηqξ
˘

.

Since the pushforward ψFM is injective, the statement below shows that the graded CHpMq-
module CHpMF q b CHpMF qr´1s is isomorphic to the principal ideal of xF in CHpMq.
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Proposition 2.7. The composition ψFM ˝ ϕ
F
M : CHpMq Ñ CHpMq is the multiplication by xF .

We next introduce the analogous maps for Chow rings (rather than augmented Chow rings).
Let F be a nonempty proper flat of M. The following definition is motivated by the geometry of
Bergman fans [BHM`20, Propositions 2.20 and 2.21].

Definition 2.8. The pullback ϕFM is the unique surjective graded algebra homomorphism

CHpMq ÝÑ CHpMF q b CHpMF q

that satisfies the following properties:

‚ If G is a flat properly contained in F , then ϕFMpxGq “ 1b xG.

‚ If G is a flat properly containing F , then ϕFMpxGq “ xGzF b 1.

‚ If G is a flat incomparable to F , then ϕFMpxGq “ 0.

‚ If G is the flat F , then ϕFMpxF q “ ´1b αMF ´ βMF
b 1.

The pushforward ψFM is the unique degree one linear map

CHpMF q b CHpMF q ÝÑ CHpMq

that maps the monomial
ś

F 1 xF 1zF b
ś

F 2 xF 2 to the monomial xF
ś

F 1 xF 1
ś

F 2 xF 2 .

The following analogue of Proposition 2.5 can be found in [BHM`20, Section 2].

Proposition 2.9. The pullback ϕFM and the pushforward ψFM have the following properties:

(1) We have ϕFMpαMq “ αMF
b 1 and ϕFMpβMq “ 1b βMF .

(2) The pushforward ψFM is injective.

(3) The pushforward ψFM commutes with the degree maps: degMF
b degMF “ degM ˝ ψ

F
M.

(4) The pushforward ψFM is a homomorphism of CHpMq-modules:

ηψFMpξq “ ψFM
`

ϕFMpηqξ
˘

for any η P CHpMq and ξ P CHpMF q b CHpMF q.

The following analogue of Lemma 2.6 immediately follows from Proposition 2.9.

Lemma 2.10. For any η P CHpMq and ξ P CHpMF q b CHpMF q, we have

degM

`

ηψFMpξq
˘

“ degMF
b degMF

`

ϕFMpηqξ
˘

.

Since the pushforward ψFM is injective, the statement below shows that the graded CHpMq-
module CHpMF q b CHpMF qr´1s is isomorphic to the principal ideal of xF in CHpMq.

Proposition 2.11. The composition ψFM ˝ ϕ
F
M : CHpMq Ñ CHpMq is the multiplication by xF .
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Finally, we introduce a third flavor of pullback and pushforward maps, this time relating the
augmented Chow ring of M to the augmented Chow ring of MF for any flat F of M, with no tensor
products. The notational difference is that F is now in the subscript rather than the superscript.

Definition 2.12. The pullback ϕM
F is the unique surjective graded algebra homomorphism

CHpMq ÝÑ CHpMF q

that satisfies the following properties:

‚ If G is a proper flat containing F , then ϕM
F pxGq “ xGzF .

‚ If G is a proper flat not containing F , then ϕM
F pxGq “ 0.

The pushforward ψM
F is the unique degree k linear map

CHpMF q ÝÑ CHpMq

that maps the monomial
ś

F 1 xF 1zF to the monomial yF
ś

F 1 xF 1 .

The next results can be found in [BHM`20, Section 2].

Proposition 2.13. The pullback ϕM
F and the pushforward ψM

F have the following properties:

(1) If i is an element of F , then ϕM
F pyiq “ 0.

(2) If i is not an element of F , then ϕM
F pyiq “ yi.

(3) The equality ϕM
F pαMq “ αMF

holds.

(4) The pushforward ψM
F is injective.

(5) The pushforward ψM
F commutes with the degree maps: degMF

“ degM ˝ ψ
M
F .

(6) The pushforward ψM
F is a homomorphism of CHpMq-modules:

ηψM
F pξq “ ψM

F

`

ϕM
F pηqξ

˘

for any η P CHpMq and ξ P CHpMF q.

The following analogue of Lemmas 2.6 and 2.10 follows from Proposition 2.13.

Lemma 2.14. For any η P CHpMq and ξ P CHpMF q, we have

degM

`

ηψM
F pξq

˘

“ degMF

`

ϕM
F pηqξ

˘

.

Since the pushforward ψM
F is injective, the statement below shows that the graded CHpMq-

module CHpMF qr´ks is isomorphic to the principal ideal of yF in CHpMq.

Proposition 2.15. The composition ψM
F ˝ ϕ

M
F : CHpMq Ñ CHpMq is the multiplication by yF .
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2.3. New lemmas. Until now, everything that has appeared in Section 2 was proved in [BHM`20].
In this section, we state a few additional lemmas about the pushforward and pullback maps that
will be needed in this paper.

The following lemma will be needed for the proof of Proposition 3.7.

Lemma 2.16. Suppose that F and G are incomparable proper flats of M. Then

ϕGMψ
F
M “ 0 and ϕGMψ

F
M “ 0.

Proof. We only prove the first equality. The second one follows from the same arguments. By Def-
inition 2.4 and Proposition 2.5, the pushforward ψGM is injective and the pullback ϕFM is surjective.
Thus, it is sufficient to show ψGMϕ

G
Mψ

F
Mϕ

F
M “ 0. Since the compositions ψGMϕ

G
M and ψFMϕ

F
M are equal

to the multiplications by xG and xF respectively (Proposition 2.7), the assertion follows because
xGxF “ 0 in CHpMq. �

The next lemma will be used in the proofs of Propositions 8.3, 11.4, 11.7, and 12.2.

Lemma 2.17. Let F be a proper flat of M.

(1) For any µ, ν P CHpMF q b CHpMF q, we have

degM

`

ψFMµ ¨ ψ
F
Mν

˘

“ ´degMF
b degMF

`

pβMF
b 1` 1b αMF qµν

˘

.

(2) When F is nonempty, for any µ, ν P CHpMF q b CHpMF q, we have

degM

`

ψFMµ ¨ ψ
F
Mν

˘

“ ´degMF
b degMF

`

pβMF
b 1` 1b αMF qµν

˘

.

Proof. We prove only part (1); the proof of part (2) is identical. By Proposition 2.5, we have

degM

`

ψFMµ ¨ ψ
F
Mν

˘

“ degMF
b degMF

`

ϕFMψ
F
Mµ ¨ ν

˘

.

Since ϕFM is surjective, there exists ν 1 P CHpMq such that ϕFMν
1 “ ν. Then,

ϕFMψ
F
Mµ ¨ ν “ ϕFMψ

F
Mµ ¨ ϕ

F
Mν

1 “ ϕFMpψ
F
Mµ ¨ ν

1q “ ϕFMψ
F
M

`

µ ¨ ϕFMpν
1q
˘

“ ϕFMψ
F
Mpµνq.

Combining the above two equations, and applying Proposition 2.5 again, we have

degM

`

ψFMµ ¨ ψ
F
Mν

˘

“ degMF
b degMF

`

ϕFMψ
F
Mpµνq

˘

“ degM

`

ψFMϕ
F
Mψ

F
Mpµνq

˘

.

Recall that ϕFMpxF q “ ´βMF
b 1´ 1b αMF , and therefore

ψFMϕ
F
Mψ

F
Mpµνq “ xFψ

F
Mpµνq “ ψFM

`

ϕFMpxF qµν
˘

“ ´ψFM
`

pβMF
b 1` 1b αMF qµν

˘

.

This implies that

degM

`

ψFMµ ¨ ψ
F
Mν

˘

“ ´degM

´

ψFM
`

pβMF
b 1` 1b αMF qµν

˘

¯

“ ´degMF
b degMF

`

pβMF
b 1` 1b αMF qµν

˘

. �



20 TOM BRADEN, JUNE HUH, JACOB P. MATHERNE, NICHOLAS PROUDFOOT, AND BOTONG WANG

For later use, we collect here useful commutative diagrams involving the pullback and the
pushforward maps.

Lemma 2.18. Let F be a proper flat of M.

(1) The following diagram commutes:

CHpMF q b CHpMF q CHpMF q b CHpMF q CHpMF q b CHpMF q

CHpMq CHpMq CHpMq.

idbϕ∅
MF

ψFM ψFM

idbψ∅
MF

ψFM
ϕ∅

M ψ∅
M

(2) More generally, for any flat G ă F , the following diagram commutes:

CHpMF q b CHpMF q CHpMF q b CHpMF
Gq b CHpMGq CHpMF q b CHpMF q

CHpMq CHpMGq b CHpMGq CHpMq.

idbϕG
MF

ψFM ψ
F zG
MG

bid

idbψG
MF

ψFM

ϕGM ψGM

(3) For any nonempty flat G ă F , the following diagram commutes:

CHpMF q b CHpMF q CHpMF q b CHpMF
Gq b CHpMGq CHpMF q b CHpMF q

CHpMq CHpMGq b CHpMGq CHpMq.

idbϕG
MF

ψFM ψ
F zG
MG

bid

idbψG
MF

ψFM

ϕGM ψGM

(4) For any flat G ď F , the following diagram commutes:

CHpMF q b CHpMF q CHpMF q b CHpMF
Gq CHpMF q b CHpMF q

CHpMq CHpMGq CHpMq.

ψFM

idbϕMF

G

ψ
F zG
MG

idbψMF

G

ψFM
ϕM
G ψM

G

(5) For any nonempty flat G ă F , the following diagram commutes:

CHpMF q b CHpMF q CHpMq

CHpMF q b CHpMF
Gq b CHpMGq CHpMGq b CHpMGq.

ψFM

idbϕG
MF

ϕGM
ψ
F zG
MG

bid
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(6) For any nonempty flat G ă F , the following diagram commutes:

CHpMF q b CHpMF q CHpMq

CHpMF q b CHpMF
Gq b CHpMGq CHpMGq b CHpMGq.

ψFM

idbϕG
MF

ϕGM
ψ
F zG
MG

bid

We omit the proof, which is a straightforward computation.

2.4. Hodge theory of the Chow ring and the augmented Chow ring. Let KpMq be the open cone
in CH1pMq consisting of strictly convex piecewise linear functions on the Bergman fan ΠM, and
let KpMq of CHpMq be the open cone in CH1pMq consisting of strictly convex piecewise linear
functions on the augmented Bergman fan ΠM. See [BHM`20, Section 2] for definitions of the
Bergman fan ΠM, the augmented Bergman fan ΠM, and the convexity of piecewise linear functions
on them. Ultimately, the only properties of KpMq and KpMq that we will use in this paper is that
they are nonempty. This fact, along with Theorems 2.19 and 2.20 and Proposition 8.10, will be
used to deduce that CHpMq and CHpMq satisfy the Hancock condition of Section 8.3.

The following results are proved in [BHM`20].

Theorem 2.19. Let M be a matroid on E, and let ` be any element of KpMq.

(1) (Poincaré duality theorem) For every nonnegative integer k ď d{2, the bilinear pairing

CHkpMq ˆ CHd´kpMq ÝÑ Q, pη1, η2q ÞÝÑ degMpη1η2q

is non-degenerate.

(2) (Hard Lefschetz theorem) For every nonnegative integer k ď d{2, the multiplication map

CHkpMq ÝÑ CHd´kpMq, η ÞÝÑ `d´2kη

is an isomorphism.

(3) (Hodge–Riemann relations) For every nonnegative integer k ď d{2, the bilinear form

CHkpMq ˆ CHkpMq ÝÑ Q, pη1, η2q ÞÝÑ p´1qk degMp`
d´2kη1η2q

is positive definite on the kernel of the multiplication by `d´2k`1.

Theorem 2.20. Let ` be any element of KpMq.

(1) (Poincaré duality theorem) For every nonnegative integer k ă d{2, the bilinear pairing

CHkpMq ˆ CHd´k´1pMq ÝÑ Q, pη1, η2q ÞÝÑ degMpη1η2q

is non-degenerate.
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(2) (Hard Lefschetz theorem) For every nonnegative integer k ă d{2, the multiplication map

CHkpMq ÝÑ CHd´k´1pMq, η ÞÝÑ `d´2k´1η

is an isomorphism.

(3) (Hodge–Riemann relations) For every nonnegative integer k ă d{2, the bilinear form

CHkpMq ˆ CHkpMq ÝÑ Q, pη1, η2q ÞÝÑ p´1qkdegMp`
d´2k´1η1η2q

is positive definite on the kernel of the multiplication by `d´2k.

Theorem 2.20 was first proved as the main result of [AHK18].

3. THE INTERSECTION COHOMOLOGY OF A MATROID

The purpose of this section is to define the HpMq-module IHpMq along with various related
objects, and to state the litany of results that will be proved in our inductive argument.

3.1. Definition of the intersection cohomology modules. Let HpMq be the subalgebra of CHpMq

generated by β. For any subspace V of CHpMq, we set

V K –

!

η P CHpMq | degMpvηq “ 0 for all v P V
)

.

Note that V is an HpMq-submodule if and only if V K is an HpMq-submodule.

We recursively construct the subspaces IHpMq and JpMq of CHpMq as follows. Proposition 2.9
shows that ψFMJpMF qbCHpMF q is an HpMq-submodule of CHpMq for every nonempty proper flat
F .

Definition 3.1. Let M be a loopless matroid of positive rank d.

(1) We define the HpMq-submodule IHpMq of CHpMq by

IHpMq–

˜

ÿ

∅ăFăE
ψFMJpMF q b CHpMF q

¸K

,

where the sum is over all nonempty proper flats F of M.

(2) We define the graded subspace JpMq of CHpMq by setting

JkpMq–

$

&

%

IHkpMq if k ď pd´ 2q{2,

β2k´d`2 IHd´k´2pMq if k ě pd´ 2q{2.
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For example, when M is a rank 1 matroid, we have

CHpMq “ IHpMq “ Q and JpMq “ 0,

and when M is a rank 2 matroid, we have

CHpMq “ IHpMq “ Q‘Qβ and JpMq “ Q.

In Section 12, we will prove that IHpMq satisfies the hard Lefschetz theorem with respect to β: For
every nonnegative integer k ă d{2, the multiplication map

IHkpMq ÝÑ IHd´k´1pMq, η ÞÝÑ βd´2k´1η

is an isomorphism. Equivalently, IHpMq is the unique representation of the Lie algebra

sl2 “ Q

#˜

0 1

0 0

¸

,

˜

1 0

0 ´1

¸

,

˜

0 0

1 0

¸+

such that the first matrix acts via multiplication by β and the second matrix acts on IHkpMq via
multiplication by 2k ´ d` 1. In terms of the sl2-action, we have

JpMq “

˜

0 0

1 0

¸

¨ IHpMq.

Let i be an element of E, and let HipMq be the subalgebra of CHpMq generated by β and xtiu.

Convention 3.2. We take xtiu “ 0 when tiu is not a flat.

As before, V is an HipMq-submodule if and only if V K is an HipMq-submodule. Proposition 2.9
shows that ψFMJpMF q b CHpMF q is an HipMq-submodule of CHpMq for every nonempty proper
flat F different from tiu. The following extension of IHpMqwill play a central role in our inductive
argument.

Definition 3.3. We define the HipMq-submodule IHipMq of CHpMq by

IHipMq–

¨

˝

ÿ

F‰tiu

ψFM JpMF q b CHpMF q

˛

‚

K

,

where the sum is over all nonempty proper flats F of M different from tiu.9

We now consider the graded algebras

HpMq– the subalgebra of CHpMq generated by yi for i P E, and

H˝pMq– the subalgebra of CHpMq generated by yi for i P E and x∅.

9Our convention gives IHipMq “ IHpMqwhen tiu is not a flat.
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If E is the empty set, then x∅ does not exist, and we do not define H˝pMq. As mentioned be-
fore, the subalgebra HpMq can be identified with the graded Möbius algebra of M defined in the
introduction [BHM`20, Proposition 2.15]. For a subspace V of CHpMq, we set

V K –

!

η P CHpMq | degMpvηq “ 0 for all v P V
)

.

Proposition 2.5 shows that ψFMJpMF qbCHpMF q is an HpMq-submodule of CHpMq for every proper
flat F of M. When F is nonempty, ψFMJpMF q bCHpMF q is in fact an H˝pMq-submodule of CHpMq.

Definition 3.4. Let M be a loopless matroid.

(1) We define the HpMq-submodule IHpMq of CHpMq by

IHpMq–

˜

ÿ

FăE

ψFMJpMF q b CHpMF q

¸K

,

where the sum is over all proper flats F of M.

(2) If E is nonempty, we define the H˝pMq-submodule IH˝pMq of CHpMq by

IH˝pMq–

˜

ÿ

∅ăFăE
ψFMJpMF q b CHpMF q

¸K

,

where the sum is over all nonempty proper flats F of M.

We now state some basic properties of the pullbacks and pushforwards for the subspaces we
have defined.

Lemma 3.5. For any nonempty proper flat F of M, we have

ϕFM IH˝pMq Ď IHpMF q b CHpMF q and ϕFMIHpMq Ď IHpMF q b CHpMF q.

Proof. We prove the second inclusion. The first inclusion follows from the same argument.

We need to show that, for any nonempty proper flat G of M properly containing F ,

ϕFMIHpMq is orthogonal to
`

ψ
GzF
MF

JpMGq b CHpMG
F q
˘

b CHpMF q in CHpMF q b CHpMF q.

By Lemma 2.10, the above is equivalent to the statement that

IHpMq is orthogonal to ψFM
`

ψ
GzF
MF

JpMGq b CHpMG
F q
˘

b CHpMF q in CHpMq.

This follows from Lemma 2.18 (3) and the orthogonality between IHpMq and ψGMJpMGqbCHpMGq

in CHpMq. �

Lemma 3.6. The following holds for any loopless matroid M.

(1) For any nonempty proper flat F of M, we have ϕM
F IH˝pMq Ď IHpMF q.
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(2) For any proper flat G ď F of M, we have ϕM
Gψ

F
MJpMF q b CHpMF q “ ψ

F zG
MG

JpMF q b CHpMF
Gq.

Proof. For the first part, it suffices to show that for any flat G containing F ,

ϕM
F IH˝pMq and ψGzFMF

`

JpMGq b CHpMG
F q
˘

are orthogonal in CHpMF q.

By Lemma 2.14, this is equivalent to the statement that

IH˝pMq and ψM
F ψ

GzF
MF

`

JpMGq b CHpMG
F q
˘

are orthogonal in CHpMq.

By Lemma 2.18 (4), we have

ψM
F ψ

GzF
MF

`

JpMGq b CHpMG
F q
˘

“ ψGM
`

JpMGq b ψ
MG

F CHpMG
F q
˘

.

Since IH˝pMq is orthogonal to ψGM
`

JpMGq b CHpMGq
˘

by construction, the subspaces IH˝pMq and
ψM
F ψ

GzF
MF

`

JpMGq b CHpMG
F q
˘

are orthogonal in CHpMq.

The second statement follows from the surjectivity ofϕMF

G and Lemma 2.18 (4), more specifically
the commutativity of the square on the left. �

Proposition 3.7. The graded linear subspaces

ψFMJpMF q b CHpMF q Ď CHpMq,

where F varies through all nonempty proper flats of M, are mutually orthogonal in CHpMq. Simi-
larly, the graded linear subspaces

ψFMJpMF q b CHpMF q Ď CHpMq,

where F varies through all proper flats of M, are mutually orthogonal in CHpMq.

Proof. We only prove the second statement. The first statement follows from the same arguments.

Let F and G be distinct nonempty proper flats. We want to show that ψFMJpMF q b CHpMF q is
orthogonal to ψGMJpMGq b CHpMGq in CHpMq. By Lemma 2.6, this is equivalent to showing that

ϕGMψ
F
MJpMF q b CHpMF q is orthogonal to JpMGq b CHpMGq in CHpMGq b CHpMGq.

If F and G are incomparable, this follows from Lemma 2.16, so we may assume without loss of
generality that G ă F . By Lemma 2.18 (5), the subspace ϕGMψ

F
MJpMF q b CHpMF q is equal to

´

ψ
F zG
MG

b id
¯

˝
`

idbϕGMF

˘ `

JpMF q b CHpMF q
˘

.

By Lemma 2.10 for the matroid MG, the statement that this subspace is orthogonal to JpMGq b

CHpMGq is equivalent to the statement that
`

idbϕGMF

˘ `

JpMF q b CHpMF q
˘

is orthogonal to
´

ϕ
F zG
MG

b id
¯

`

JpMGq b CHpMGq
˘

.
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For this, it is sufficient to show that

JpMF q b CHpMF
Gq is orthogonal to ϕF zGMG

JpMGq in CHpMF q b CHpMF
Gq.

By Lemma 2.10, the orthogonality between the above two subspaces is equivalent to

the orthogonality of ψF zGMG
JpMF q b CHpMF

Gq and JpMGq in CHpMGq.

This follows from the orthogonality between ψF zGMG
JpMF qbCHpMF

Gq and IHpMGq, and the fact that
JpMGq Ď IHpMGq. �

3.2. The statements. Let N “
À

kě0 Ni be a graded Q-vector space endowed with a bilinear form

x´,´y : NˆN Ñ Q

and a linear operator L: N Ñ N of degree 1 that satisfies xLpηq, ξy “ xη,Lpξqy for all η, ξ P N.

Definition 3.8. Using the notation above, we define three properties for N.

(1) We say that N satisfies Poincaré duality of degree d if the bilinear form x´,´y is non-degenerate,
and for η P Nj and ξ P Nk, the pairing xη, ξy is nonzero only when j ` k “ d.

(2) We say that N satisfies the hard Lefschetz theorem of degree d if the linear map

Ld´2k : Nk Ñ Nd´k

is an isomorphism for all k ď d{2.

(3) We say that N satisfies the Hodge–Riemann relations of degree d if the restriction of

Nk ˆNk ÝÑ Q, pη, ξq ÞÝÑ p´1qkxLd´2kpηq, ξy

to the kernel of Ld´2k`1 : Nk Ñ Nd´k`1 is positive definite for all k ď d{2.

We now define the central statements that appear in the induction.

First, the augmented Chow ring admits canonical decompositions into HpMq-modules, and the
Chow ring admits canonical decompositions into HpMq-modules.

Definition 3.9 (Canonical decompositions). Let i be an element of the ground set E.

CDpMq: We have the direct sum decomposition

CHpMq “ IHpMq ‘
à

FăE

ψFMJpMF q b CHpMF q,

where the sum is over all proper flats F of M.
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CD˝pMq: We have the direct sum decomposition

CHpMq “ IH˝pMq ‘
à

∅ăFăE
ψFMJpMF q b CHpMF q,

where the sum is over all nonempty proper flats F of M.

CDpMq: We have the direct sum decomposition

CHpMq “ IHpMq ‘
à

∅ăFăE
ψFMJpMF q b CHpMF q,

where the sum is over all nonempty proper flats F of M.

CDipMq: We have the direct sum decomposition

CHpMq “ IHipMq ‘
à

F ‰ tiu

ψFMJpMF q b CHpMF q,

where the sum is over all nonempty proper flats F of M different from tiu.

Convention 3.10. We will use a superscript to denote that the decompositions hold in certain de-
grees. For example, CDďkpMqmeans that the direct sum decomposition holds in degrees less than
or equal to k.

Remark 3.11. Let V and W be finite-dimensional Q-vector spaces with subspaces V1 Ď V and
W1 Ď W . Given a non-degenerate pairing V ˆW Ñ Q, we can define the orthogonal subspaces
WK

1 Ď V and V K1 ĎW . It is straightforward to check thatW “W1‘V
K

1 if and only if V “ V1‘W
K
1 .

Applying this fact repeatedly, we have

CDkpMq ðñ CDd´kpMq, CDpMq ðñ CDď
d
2 pMq, CD˝pMq ðñ CD

ď d
2

˝ pMq.

Similarly, we have CDpMq ðñ CDď
d´1

2 pMq and CDipMq ðñ CD
ď d´1

2
i pMq.

Let R be a graded Q-algebra that is generated in positive degree, and let m Ď R denote the
unique graded maximal ideal. For any graded R-module N, the socle of N is the graded submod-
ule

socpNq– tn P N | m ¨ n “ 0u.

The next conditions assert that the socles of the intersection cohomology modules defined in Sec-
tion 3.1 vanish in low degrees. As before, the symbol d stands for the rank of the matroid M.

Definition 3.12 (No socle conditions).

NSpMq: The socle of the HpMq-module IHpMq vanishes in degrees less than or equal to d{2.

NS˝pMq: The socle of the H˝pMq-module IH˝pMq vanishes in degrees less than or equal to d{2.

NSpMq: The socle of the HpMq-module IHpMq vanishes in degrees less than or equal to pd´ 2q{2.
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In particular, for even d, the no socle condition for IHpMq says that the socle of the HpMq-module
IHpMq is concentrated in degrees strictly larger than the middle degree d{2. On the other hand,
for an odd number d, the socle of the HpMq-module IHpMq may be nonzero in the middle degree
pd´ 1q{2.

Recall that we have Poincaré pairings on CHpMq and CHpMq defined by

xη, ξyCHpMq – degMpη ξq and xη, ξyCHpMq – degMpη ξq.

Moreover, with respect to the above bilinear forms, CHpMq satisfies Poincaré duality of degree d
and CHpMq satisfies Poincaré duality of degree d´ 1, by Theorems 2.19 and 2.20.

Definition 3.13 (Poincaré dualities).

PDpMq: The graded vector space IHpMq satisfies Poincaré duality of degree d with respect to the
Poincaré pairing on CHpMq.

PD˝pMq: The graded vector space IH˝pMq satisfies Poincaré duality of degree d with respect to
the Poincaré pairing on CHpMq.

PDpMq: The graded vector space IHpMq satisfies Poincaré duality of degree d´ 1 with respect to
the Poincaré pairing on CHpMq.

Definition 3.14 (Hard Lefschetz theorems).

HLpMq: For any positive linear combination y “
ř

jPE cjyj , the graded vector space IHpMq satis-
fies the hard Lefschetz theorem of degree d with respect to multiplication by y.

HL˝pMq: For any positive linear combination y “
ř

jPE cjyj , there is a positive ε such that the
graded vector space IH˝pMq satisfies the hard Lefschetz theorem of degree d with respect to mul-
tiplication by y ´ εx∅.

HLipMq: For any positive linear combination y1 “
ř

jPEzi cjyj , the graded vector space IHpMq

satisfies the hard Lefschetz theorem of degree d with respect to multiplication by y1.

HLpMq: The graded vector space IHpMq satisfies the hard Lefschetz theorem of degree d´ 1 with
respect to multiplication by β.

HLipMq: The graded vector space IHipMq satisfies the hard Lefschetz theorem of degree d´1 with
respect to multiplication by β´xtiu. Here we recall our convention that xtiu “ 0 if tiu is not a flat.

Definition 3.15 (Hodge–Riemann relations).

HRpMq: For any positive linear combination y “
ř

jPE cjyj , the graded vector space IHpMq satis-
fies the Hodge–Riemann relations of degree dwith respect to the Poincaré pairing on CHpMq and
the multiplication by y.
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HR˝pMq: For any positive linear combination y “
ř

jPE cjyj , there is a positive ε such that the
graded vector space IH˝pMq satisfies the Hodge–Riemann relations of degree d with respect to
the Poincaré pairing on CHpMq and the multiplication by y ´ εx∅.

HRipMq: For any positive linear combination y1 “
ř

jPEzi cjyj , the graded vector space IHpMq

satisfies the Hodge–Riemann relations of degree dwith respect to the Poincaré pairing on CHpMq

and the multiplication by y1.

HRpMq: The graded vector space IHpMq satisfies the Hodge–Riemann relations of degree d ´ 1

with respect to the Poincaré pairing on CHpMq and the multiplication by β.

HRipMq: The graded vector space IHipMq satisfies the Hodge–Riemann relations of degree d ´ 1

with respect to the Poincaré pairing on CHpMq and the multiplication by β ´ xtiu.

As before, we will use a superscript to denote that the conditions hold in certain degrees. For ex-
ample, PDkpMqmeans the Poincaré pairing on CHpMq induces a non-degenerate pairing between
IHkpMq and IHd´kpMq, and HLkpMqmeans the hard Lefschetz map from IHkpMq to IHd´kpMq is an
isomorphism.

Now we state the main result of this paper, which will be proved using induction on the cardi-
nality of the ground set E.

Theorem 3.16. Let M be a loopless matroid on E. If E is nonempty, the following statements hold:

CDpMq, NSpMq, PDpMq, HLpMq, HRpMq,

CD˝pMq, NS˝pMq, PD˝pMq, HL˝pMq, HR˝pMq,

CDpMq, NSpMq, PDpMq, HLpMq, HRpMq.

As a byproduct, we will also prove the statements HLipMq, HRipMq, HLipMq, and HRipMq. How-
ever, we will not use these statements in our applications, and we do not need them in the induc-
tive hypothesis.

Remark 3.17. If E is the empty set, the statements CDpMq, PDpMq, HLpMq, and HRpMq hold tauto-
logically. The statement NSpMq fails, as we have HpMq “ CHpMq “ IHpMq “ Q, so the socle is
nonvanishing in degree 0. This is directly related to the fact that the Kazhdan–Lusztig polynomial
of the rank zero matroid has larger than expected degree. The remaining statements do not make
sense because IH˝pMq and IHpMq are not defined when E is empty.

4. GUIDE TO THE PROOF

The proof of our main result, Theorem 3.16, is a complex induction involving all of the state-
ments introduced in the previous section. A more or less complete diagram of the steps of the
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PD˝pMq, CD˝pMq
PDpMq, CDpMq NSă

d´2
2 pMq HLipMq,HRipMq

HLă
d´2

2 pMq CDă
d
2 pMq NSă

d
2 pMq

HRă
d´2

2 pMq HLipMq,HR
ă d

2
i pMq HLpMq

HRă
d
2 pMq HL˝pMq

HR
ă d

2
˝ pMq HR˝pMq

NSpMq NS˝pMq

HLpMq CDpMq NSpMq

HRpMq HRpMq

All statements for matroids on fewer elements

8.4 10.12 10.16

7.18

12.1

12.2 8.8

11.4 9.7 9.9 12.3

11.7

11.1 11.6

8.15

12.4

12.5

12.6

12.2 8.8

11.4 8.16

FIGURE 1. Diagram of the proof
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induction appears in Figure 1. The purpose of this section is to highlight the main steps in the
proof, to explain what these steps mean in the geometric setting when M is realizable, and to
make some comparisons with the structure of the proofs of Karu [Kar04] and Elias–Williamson
[EW14].

We hope that readers will benefit from flipping back to this section frequently as they read the
rest of the paper. However, this section is not needed for establishing the results in this paper;
it is included only to communicate the overall structure and geometric insight behind the main
ingredients of the proof. It may be skipped in full by readers who would like to stick to a purely
formal treatment.

4.1. Canonical decomposition. As discussed in Section 1.3, when the matroid M is realizable,
CHpMq is the cohomology ring of a resolution X of the Schubert variety Y . Thus, the decom-
position theorem suggests that CHpMq should be a direct sum of indecomposable graded HpMq-
submodules, each of which is isomorphic to a shift of IHpMF q for some flat F .10 In our proof,
we obtain such a decomposition as a consequence of the coarser decomposition CDpMq (Defini-
tion 3.9). The summand in CDpMq indexed by the proper flat F is isomorphic as an HpMq-module
to a direct sum of shifts of copies of CHpMF q, so it can be further decomposed using the same
formula. Iterating this, one can obtain a decomposition of CHpMq into shifted copies of IHpMF q

for various flats F .

The decomposition CDpMq has several properties which make proving it easier than proving
the full decomposition into irreducible modules directly. First of all, CDpMq is canonical, since
the definition of JpMq does not involve any choices (Definition 3.1). Second, the summands are
orthogonal to each other with respect to the Poincaré pairing on CHpMq (Proposition 3.7), and in
fact, we define IHpMq to be the perpendicular space to the other summands (Definition 3.4).

The problem then is to show that the terms actually do form a direct sum. It turns out that,
if we assume inductively that all our results hold for the matroids MF with F a nonempty flat,
then the weaker decomposition CD˝pMq (Definition 3.9) follows by a simple formal argument
(Corollary 8.4). Thus, we need to show that we have defined JpMq Ď IHpMq such that ψ∅

MpJpMqq

and its perpendicular space inside IH˝pMq form a direct sum. We show in Proposition 12.2 that
this is a consequence of the hard Lefschetz property HLpMq for IHpMq.

Let us explain the motivation for the definition of JpMq, using two functors which are defined in
greater generality in Section 5.2. For a graded HpMq-module N, its costalk Nr∅s is the socle of N, the
submodule of elements annihilated by the maximal ideal m generated by all yF . Dually, its stalk
N∅ is the cosocle of N, or in other words the quotient N{mN. There is a natural transformation

10There is a surjection HpMq Ñ HpMF
q defined by setting yG “ 0 unless G ď F , so IHpMF

q is naturally an HpMq-
module.
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Nr∅s Ñ N∅ from the costalk to the stalk. If N is contained in the image of ψ∅
M, which is the ideal

generated by x∅, then m annihilates N, and hence Nr∅s “ N “ N∅. Thus, if N is a direct summand
of IH˝pMq, then the composition Nr∅s Ñ IH˝pMqr∅s Ñ IH˝pMq∅ must be injective.

On the other hand, the costalk-stalk maps for the modules CHpMq and IH˝pMq have nice de-
scriptions. The stalk CHpMq∅ is isomorphic to CHpMq, and using the push-pull maps ϕ∅

M and ψ∅
M

along with the fact that the ideals xx∅y and m are each others’ annihilators (Lemma 5.2), it follows
that the costalk is isomorphic to CHpMqr´1s, and under these isomorphisms the costalk-stalk map
is identified with multiplication by β. In Corollaries 8.6 and 8.7, we show that we have a similar
picture for the direct summand IH˝pMq: The costalk-stalk map for this module can be identified
with the multiplication

IHpMqr´1s
¨β
ÝÑ IHpMq.

Once we know HLpMq, we see that the largest possible subspace of IHpMq on which multiplication
by β acts injectively, and so could produce a direct summand, is the span of all classes βja, where
a is a primitive class in IHkpMq and j is strictly less than d ´ 1 ´ 2k. This is precisely our space
JpMq. It also follows that the stalk IHpMq∅ is the quotient IHpMq{β ¨ IHpMq, which allows us to
conclude the condition NSpMq, or equivalently, Proposition 1.6.

Remark 4.1. Let us explain the geometry behind these definitions and statements when M is re-
alizable as in Section 1.3. Recall that the augmented wonderful variety X is obtained from the
Schubert variety Y by blowing up the proper transforms of the closures UF of strata UF in order
of increasing dimension, and in particular the exceptional divisor has a component DF for any
proper flat F . The map ψFM of Definition 2.4 is the Gysin pushforward for the divisor DF . The di-
visor D∅ is the fiber of X Ñ Y over the point stratum U∅; it is the wonderful variety of [DCP95],
and we denote it here by X∅. Its cohomology ring is identified with CHpMq, and the restriction
H‚pXq Ñ H‚pD∅q is identified with the pullback ϕ∅

M : CHpMq Ñ CHpMq of Definition 2.4.

When F is not the empty flat, the divisor DF is isomorphic to the product XF ˆX
F , where XF

is the fiber of the resolution XF of the Schubert variety YF over the point stratum, and XF is the
resolution of UF . The fact that DF is a product gives the tensor product structure on the domain
of ψFM, and it explains why we are able to prove a “decomposition theorem” whose summands are
copies of CHpMF q rather than smaller intersection cohomology spaces.

The resolution X Ñ Y factors through Y˝, the blow-up of Y at the point stratum U∅. The co-
homology class of the exceptional divisor pulls back to the element x∅ in CHpMq, and the decom-
position CD˝pMq reflects the decomposition theorem applied to the map X Ñ Y˝. In particular,
IH˝pMq is isomorphic to the intersection cohomology of Y˝, and its quotient IHpMq is isomorphic to
the intersection cohomology of the exceptional fiber Y , whose resolution is D∅ “ X∅. Although
the whole cohomology ring of Y does not seem to be combinatorially accessible, we know that
the ample class given by its normal bundle in Y˝ is β. The fact that the hard Lefschetz theorem for
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β acting on IH‚pY q implies the decomposition theorem for Y˝ Ñ Y is a well-known phenomenon
thanks to the work of de Cataldo and Migliorini [dCM09].

The variety Y can be viewed as a “local” counterpart to Y , since the singularity of Y at the
point stratum is the affine cone over the projective variety Y . One of the reasons for the complex-
ity of our inductive argument is the need to prove statements in both the “local” and “global”
setting: we prove a canonical decomposition CDpMq of CHpMq analogous to CDpMq, we prove the
Hodge–Riemann relations HRpMq for IHpMq, and so on. This is in contrast to Karu’s proof for the
combinatorial intersection cohomology of fans [Kar04], where an important role is played by the
fact that any affine toric variety is a (weighted) cone over a projective toric variety of dimension
one less.

4.2. Rouquier complexes. As an intermediate step to proving HLpMq, we prove the weaker state-
ment NSpMq (Definition 3.12). When d is even, the statement that there is no socle in degree exactly
pd´2q{2 is equivalent to hard Lefschetz in that degree, since IH

d´2
2 pMq and IH

d
2 pMq have the same

dimension by Poincaré duality. The no socle condition in this middle degree requires a more elab-
orate argument (Section 4.6), and our first step is to prove that IHpMq has no socle in degrees
strictly less than pd´ 2q{2 (Corollary 7.18).

We do this in Section 7 by constructing a complex C̄‚˝pMq of graded H˝pMq-modules, which we
call the (small reduced) Rouquier complex. It has the following properties:

(1) C̄k
˝pMq vanishes for k ă 0 or k ą d.

(2) C̄0
˝pMq is isomorphic to IH˝pMq (Theorem 7.16 (2)).

(3) For any 1 ď k ď d, C̄k
˝pMq is isomorphic to a direct sum of modules of the form IH˝pM

F qrpk ´

crkF q{2s, where F is a nonempty proper flat such that crkF ´ k is nonnegative and even
(Theorem 7.16 (2)).

(4) For any k, the cohomology HkpC̄‚˝pMq∅q of the stalk complex vanishes except in degree d´1´k

(Proposition 7.13).

These properties imply in particular that the differential C̄0
˝pMq∅ Ñ C̄1

˝pMq∅ of the stalk complex
is injective except in degree d ´ 1, that its source is isomorphic to IHpMq, and that its target is
isomorphic to a direct sum of Qrβs-modules of the form IHpMF qrp1´crkF q{2s. Since the flats F are
proper, the matroids MF have smaller ground sets, and we can assume inductively that we have
proved the hard Lefschetz property for the β-action on each module IHpMF q occurring in C̄1

˝pMq∅.
Together with property (3), which restricts the shifts that can occur, this implies that C̄1

˝pMq∅ has
no β-socle in degrees strictly less than pd ´ 2q{2, and since property (4) says the differential is
injective in those degrees, the same holds for C̄0

˝pMq∅, which by (2) is isomorphic to IHpMq.
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We only use the first differential of the complex C̄‚˝pMq in our proof, but it is no more difficult
for us to construct the whole complex, and its existence should be of independent interest. This
complex is analogous to the Rouquier complex of Soergel bimodules which appears in the proof
of Elias and Williamson, and like that complex it models a certain “Verma-type” perverse sheaf in
the realizable case. In our setting, the perverse sheaf lives on the blow-up variety Y˝. This variety
has a natural stratification Y˝ “

š

F‰∅ U
F
˝ with the property that the image of UF˝ in Y is UF . If

j : UE˝ Ñ Y˝ denotes the inclusion, then the pure modules C̄k
˝pMq∅ are the cohomology groups of

the associated graded sheaves of the weight filtration on the mixed perverse sheaf j!QUE˝
, and the

differentials are given by the extensions between successive graded pieces. Since the associated
graded sheaves are pure, they are direct sums of shifts of intersection cohomology sheaves, and
the fact that j!QUE˝

is perverse (up to a shift) implies the restriction on shifts of the summands in
property (3).

We find the complex C̄‚˝pMq as a quasi-isomorphic subcomplex of a larger complex C‚˝pMqwhich
we call the big reduced Rouquier complex. The big reduced complex is easier to define (Sec-
tion 7.1): we put C0

˝pMq– CHpMq, and for positive i, we put

Ci
˝pMq–

à

∅ăF1ă¨¨¨ăFiăE

xF1 ¨ ¨ ¨xFi CHpMqris.

The entries of the differential are multiplication by monomials xF , up to sign. The H˝pMq-modules
in this complex are pure (Corollary 7.4 (2)), meaning that they are isomorphic to direct sums of
shifts of modules IH˝pM

F q. The small reduced complex is the quasi-isomorphic complex obtained
by canceling all summands which are mapped isomorphically to a summand in the next degree
(Lemma 7.14).

While the small reduced Rouquier complex represents a sheaf on Y˝, the big reduced Rouquier
complex reflects the geometry of the resolution p : X Ñ Y˝. The open set U – p´1pUE˝ q is the
complement of the union D of the divisors DF for F ‰ ∅, and the sheaf j!QUE˝

is isomorphic to
p!jU !QU

, where jU : U Ñ X is the inclusion. The divisor D has normal crossings, so jU !QU
has a

filtration whose i-th graded piece is (up to a shift) the direct sum of constant sheaves on all i-fold
intersections of divisors DF . The cohomology of this graded piece is the module Ci

˝pMq.

We also construct nonreduced variants: the small Rouquier complex C̄‚pMq is a complex of
graded HpMq-modules, whose i-th entry is a sum of modules IHpMF qrpi ´ crkF q{2s, where now
F is allowed to be any flat, including ∅ (Theorem 7.16 (1)). As in the reduced case, the small
Rouquier complex is quasi-isomorphic to a larger complex C‚pMq, called the big Rouquier com-
plex, which is simpler to define. These complexes represent the extension of QUE by zero on Y .
In some ways they are more natural than the reduced complexes, but proving that C̄‚pMq satis-
fies the analogue of the perversity property (3) requires a number of properties, including the full
canonical decomposition CDpMq, which have not been proved until the full induction is complete.
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4.3. Hard Lefschetz for IHpMq. The proof of the statement HLpMq (Definition 3.14) follows a stan-
dard argument similar to one which appears in [Kar04] and [EW14], using restriction to divi-
sors to deduce the hard Lefschetz theorem from the Hodge–Riemann relations for smaller ma-
troids (Proposition 12.3). The basic structure we use is a factorization of multiplication by the
degree k monomial yF as the composition of the maps ϕM

F and ψM
F (Proposition 2.15). We take a

class ` “
ř

FPL1pMq cF yF with positive cF as in the statement of Theorem 1.5. If we have a class
η P IHkpMq for k ă d{2 for which `d´2kη “ 0, applying ϕM

F for any F P L1pMq gives

ϕM
F p`q

d´2k ¨ ϕM
F pηq “ 0.

Since rk MF “ d ´ 1, this says that ϕM
F pηq is a primitive class in IHkpMF q with respect to the

class `1 – ϕM
F p`q. This class satisfies the hypotheses of Theorem 1.5 for the matroid MF , so we

can assume inductively that the Hodge–Riemann relations hold. By Proposition 2.13 and Lemma
3.6 (1), we have

0 “ degMp`
d´2kη2q “

ÿ

F

cF degMF
pp`1qd´2k´1ϕM

F pηq
2q.

Since the cF are all positive, the Hodge–Riemann relations for MF imply that all of the sum-
mands have the same sign, and so they all must vanish. Since the Hodge–Riemann forms are
non-degenerate, we must have ϕM

F pηq “ 0 for every F , and so η is annihilated by every yF . In
other words, η is in the socle of the HpMq-module IHpMq. However, we show in Proposition 8.8
that the socle of IHpMq vanishes in any degree less than or equal to d{2 for which the canonical
decomposition CDpMq holds. At this point in the induction, we only know this decomposition
outside of the middle degree d{2, but this is enough.

4.4. Deletion induction for IHpMq. An important step of our argument is deducing the Hodge–
Riemann relations HRpMq and HRpMq (Definition 3.15), except possibly in the middle degree
(postponed until Section 4.6), by inductively using the Hodge–Riemann relations for matroids
on smaller sets. The arguments for IHpMq and IHpMq are somewhat parallel, but the case of IHpMq

is simpler, so we begin with it even though it appears later in the structure of the whole proof.

This step uses the relation between M and the deletion Mzi. This is a matroid on the set Ezi
whose independent sets are the independent sets of M which do not contain i. We will assume
that i is not a coloop of M, which means that there is at least one basis which does not contain i,
and therefore that M and Mzi have the same rank. If all elements of E are coloops, then M is a
Boolean matroid. This is the base case of our induction; we prove Theorem 3.16 in this case by a
direct calculation in Section 12.2. For simplicity, we assume in this section and in Section 4.5 that
all of the rank one flats are singletons, and in particular that tiu is a flat.

We have a homomorphism θM
i : CHpMziq Ñ CHpMq which takes yj to yj for each j ‰ i, and so

it sends HpMziq injectively to HpMq (Section 9.1). This map plays a major role in the semi-small
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decomposition of CHpMq obtained in [BHM`20]. In Section 9, we prove the following result,
modulo the technical issue described in Remark 4.2 below.

Theorem. As an HpMziq-module, IHpMq is isomorphic to a direct sum of modules of the form

IHppMziqGqr´pcrkGq{2s, (˚)

where G is a flat of Mzi of even corank.

Remark 4.2. At the stage of the induction that this argument appears, we only know the canonical
decomposition CDpMq holds in degrees outside of the middle degree when d is even. So we actu-
ally prove the theorem above for a modified module ĂIHpMq, defined in Section 9.2, which we can
prove is a direct summand of CHpMq (Lemma 9.3). It equals IHpMq except in the middle degree

d{2, where it equals IH
d
2
˝ pMq. Because of this, the argument below only gives the Hodge–Riemann

relations for IHpMq in degrees strictly less than d{2. We need a separate argument later to handle
the middle degree, which we highlight in Section 4.6. The theorem as stated is true, but it can only
be proved after the entire induction is finished.

Because Mzi has a smaller ground set, we can inductively assume that all of our statements hold
for all of the matroids pMziqG in the theorem. In particular, IHppMziqGq satisfies hard Lefschetz and
the Hodge–Riemann relations for any positive linear combination `1 “

ř

j‰i cjyj P HpMziq. The
shift by´pcrkGq{2 in the summand (˚) ensures that each summand is centered at the same middle
degree as IHpMq, so our theorem shows that IHpMq satisfies hard Lefschetz for the class `1. That is,
HLipMq holds (Corollary 9.7). By keeping careful track of how the Poincaré pairing restricts to the
summand (˚) (Lemma 9.8), we can also deduce that the Hodge–Riemann inequalities hold for `1.

That is, the statement HR
ă d

2
i pMq also holds (Corollary 9.9).

Next we use a standard deformation argument to pass from the special class `1 to a class ` “

`1 ` ciyi with positive ci. We have already shown HLpMq, HLipMq, and HR
ă d

2
i pMq; that is, IHpMq

satisfies hard Lefschetz for both ` and `1, and the Hodge–Riemann relations hold for `1. But for
a continuous family of classes all of which satisfy hard Lefschetz, the signature of the associated
pairings cannot change, so the Hodge–Riemann relations for `1 imply them for `. Hence, we have
deduced the statement HRă

d
2 pMq (Proposition 11.1).

Remark 4.3. When M is realizable, the theorem above follows from a study of the properties of a
map q : Y Ñ Y 1, where Y and Y 1 are the Schubert varieties corresponding to M and Mzi, respec-
tively. This map is obtained by restricting the projection pP1qE Ñ pP1qEzi, and it is compatible
with the stratifications: for each F P LpMq, the restriction of q to UF has image UF zi. The result-
ing map UF Ñ UF zi is an isomorphism if rkM F “ rkMzipF ziq, or a fiber bundle with P1 fibers
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if rkM F “ rkMzipF ziq ` 1. An easy argument shows that q˚ ICY is perverse, and by the decom-
position theorem, it is semisimple. These two properties together give the theorem. We point to
[BV20, Section 1.1] for more geometric insight in this direction.

In order to prove the theorem for all matroids, we must prove the analogous properties in our
algebraic setting: that IHpMq is pure as an HpMziq-module, meaning that it is a direct sum of shifts
of modules IHppMziqGq, and that it is perverse, meaning that the shifts of the summands are as
in (˚). Purity follows from the fact that CHpMq is a direct sum of CHpMziq-modules of the form
CHppMziqF qrks for various flats F P LpMziq and k P Z. This was proved in [BHM`20]; we recall
this result in Section 9.1.

To show that IHpMq is perverse as an HpMziq-module, we imitate the proof from the geometric
case. We define stalk and costalk functors (Section 5.2)

p´qF , p´qrF s : HpMq´mod Ñ Q´mod, F P LpMq

generalizing the case F “ ∅ discussed previously. We show that Poincaré duality (Lemma 9.3)
together with the no socle condition NSpMq implies that the stalks and costalks of IHpMq satisfy
the degree restrictions expected for intersection cohomology (Proposition 6.3). When IHpMq is
considered as an HpMziq-module, the (co)stalk at F P LpMziq is the sum of the (co)stalks at the
flats tF, F Y iu X LpMq (the short exact sequence (4)). This implies (Lemma 9.5) that the degree
restrictions on HpMziq (co)stalks are relaxed by one from the ones for IHpMziq, which shows that
each summand must appear with the correct “perverse” shift.

Remark 4.4. The map q : Y Ñ Y 1 resembles a map which naturally appears in the inductive com-
putation of intersection cohomology of Schubert varieties, and which motivates a key step of the
proof of Elias–Williamson. Given a Schubert variety Xys with ys ą y and s a simple reflection,
there is a map from a P1-bundle over the smaller Schubert variety Xy to Xys. Like the map q, it
is compatible with the stratification by cells, and the fibers are either points or rational curves, so
the pushforward of the IC sheaf is a perverse sum of IC sheaves. However, the roles of the source
and target in the two situations are different. In our case, the base Y 1 is a simpler variety which we
can assume inductively that we already understand. In contrast, the Schubert variety map uses
inductive knowledge about Xy to deduce results about the base Xys.

4.5. Deletion induction for IHpMq. In Section 10, we use a similar argument to deduce hard Lef-
schetz and the Hodge–Riemann relations for IHpMq from the same statements for matroids on
smaller ground sets. There is one significant difficulty, however. We would like to decompose
IHpMq as a direct sum of terms of the form

IHppMziqGqr´pcrkGq{2s, (˚˚)
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but these are not modules over the same ring. The operators βM and βMzi which act on these
spaces are the images of ´x∅ in CHpMq and CHpMziq, respectively. However, the natural map
CHpMq Ñ CHpMziq sends x∅ to x∅ ` xtiu, so βMzi is sent to βM ´ xtiu. But xtiu does not act on
IHpMq, so we must consider a larger space

IHipMq “ IHpMq ‘ ψ
tiu
M

`

JpMtiuq b CHpMtiuq
˘

.

It is this space that we decompose into a sum of terms of the form (˚˚) (Corollary 10.11).

The upshot is that we can show using the inductive assumptions for matroids pMziqG that hard
Lefschetz and Hodge–Riemann hold for the action of βM ´ xtiu on IHipMq (Corollaries 10.12 and
10.16). This statement, combined with NSpMq, implies hard Lefschetz for βM on IHpMq (Proposi-
tion 12.1). By deforming βM ´ xtiu to βM, we get the Hodge–Riemann relations as well (Proposi-
tion 11.4). However, as noted in Section 4.2, in our first pass we only prove NSpMq strictly below
the critical degree pd ´ 2q{2, so we only get hard Lefschetz and Hodge–Riemann in that range as
well. When d is even, we need an additional chain of arguments to finish the proof in this degree.

4.6. The middle degree. Finally, we are faced with the problem of proving the Hodge–Riemann
relations in the middle degree IH

d
2 pMq. Although the space of primitive classes depends on the

choice of an ample class `, if we already know the Hodge–Riemann relations in degrees below d{2,
then showing them in middle degree is equivalent to showing that the signature of the Poincaré
pairing on the whole space IH

d
2 pMq is

ř

kě0p´1qk dim IHkpMq (Proposition 8.10).

We say that a graded vector space with non-degenerate pairing that satisfies this condition on
the pairing in middle degree is Hancock (i.e. “has a nice signature”). This condition is preserved
by taking tensor products and orthogonal direct sums (Lemma 8.11). In [BHM`20], we showed
that CHpMq satisfies Hodge–Riemann, so in particular it is Hancock. The fact that IHpMq satisfies
hard Lefschetz and Hodge–Riemann implies that JpMq does too, so we can deduce that each sum-
mand ψFM

`

JpMF q b CHpMF q
˘

in the decomposition CDpMq is Hancock (Corollary 8.14). If every
term but one in an orthogonal direct sum decomposition is Hancock, and the whole space is as
well, then the remaining summand is Hancock (Lemma 8.12). Thus, once we have the canonical
decomposition CDpMq, we can deduce that IHpMq is Hancock and thus satisfies Hodge–Riemann
in middle degree (Proposition 8.16).

At this point, our induction still has a gap because we have not proved the decomposition
CDpMq in the middle degree d{2. To fix this, we first work with IH˝pMq, which we do know
is a direct summand of CHpMq. Following the argument of the previous paragraph shows that
IH˝pMq satisfies the Hodge–Riemann relations in all degrees (Propositions 11.7 and 8.15), and this
implies that IH˝pMq has no socle in degrees less than or equal to d{2 as an H˝pMq-module (Propo-
sition 12.4). Because IHpMq is the quotient of IH˝pMq by the action of the generators of HpMq,
this implies the full condition NSpMq, including in the missing degree pd´ 2q{2 (Proposition 12.5).
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But the lack of socle in IH
d´2

2 pMq is equivalent to hard Lefschetz in that degree (Proposition 12.6),
which gives the final ingredient needed to close the induction loop and prove the full canonical
decomposition CDpMq (Proposition 12.2).

5. MODULES OVER THE GRADED MÖBIUS ALGEBRA

We begin by defining and studying some basic constructions involving graded modules over
the graded Möbius algebra HpMq. This section is entirely independent of Section 3.

5.1. Annihilators. We begin with a general lemma about annihilators of ideals in Poincaré duality
algebras.

Lemma 5.1. LetR be a finite-dimensional commutative algebra equipped with a degree map with
respect to which R satisfies Poincaré duality as in Theorems 2.19 (1) and 2.20 (1). Let I, J Ď R be
ideals. Let AnnpIq denote the annihilator of I in R. The following identities hold:

(1) If J “ AnnpIq, then I “ AnnpJq;

(1) AnnpI ` Jq “ AnnpIq XAnnpJq;

(1) AnnpI X Jq “ AnnpIq `AnnpJq.

Proof. For the first item, notice that AnnpIq “ IK, where the perp is taken with respect to the
Poincaré duality pairing of R. Since pIKqK “ I , the first assertion follows. The second item is
obvious. For the third item, we use the first and second items to conclude

AnnpI X Jq “ Ann
´

Ann
`

AnnpIq
˘

XAnn
`

AnnpJq
˘

¯

“ Ann
´

Ann
`

AnnpIq `AnnpJq
˘

¯

“ AnnpIq `AnnpJq. �

Lemma 5.2. The ideals xx∅y and xyi | i P Ey are mutual annihilators inside of CHpMq.

Proof. By Proposition 2.5 and Proposition 2.7, the annihilator of x∅ is equal to the kernel of ϕ∅
M,

which is equal to xyi | i P Ey. The opposite statement follows from Theorem 2.19 (1) and Lemma
5.1 (1). �

An upwardly closed subset Σ Ď LpMq is called an order filter. For any flat F of M, we will
denote the order filters tG | G ě F u and tG | G ą F u by ě F and ą F , respectively.

Definition 5.3. For any order filter Σ, we define an ideal of the graded Möbius algebra

ΥΣ – QtyG | G P Σu Ď HpMq.

By convention, we have y∅ “ 1 and ΥLpMq “ HpMq.
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The following lemma generalizes Lemma 5.2.

Lemma 5.4. For any order filter Σ, the ideals CHpMq ¨ ΥΣ and CHpMq ¨ txF | F R Σu are mutual
annihilators in CHpMq.

Proof. By Lemma 5.1 (1), it is sufficient to prove that CHpMq ¨ ΥΣ is the annihilator of the set
txF | F R Σu. If F R Σ and G P Σ, then G ę F , and hence

yGxF “ 0.

This proves that CHpMq ¨ ΥΣ annihilates txF | F R Σu. For the opposite inclusion, we use down-
ward induction on the cardinality of Σ.

The base case Σ “ LpMq is trivial. Now suppose that Σ is a proper order filter and that the
statement is true for all order filters strictly containing Σ. Let η be an element of CHpMq satisfying
ηxF “ 0 for all F R Σ. We need to show that η is in the ideal ΥΣ ¨ CHpMq.

Let H be a maximal flat not in Σ. Then ηxH “ 0, and applying our inductive hypothesis to the
order filter ΣY tHu, we find that

η P ΥΣYtHu ¨ CHpMq “ yH CHpMq `ΥΣ ¨ CHpMq.

Now, for some ξ, ξF P CHpMq, we may write

η “ yHξ `
ÿ

FPΣ

yF ξF .

Since H R Σ, we have xHyF “ 0 for all F P Σ, and hence

0 “ xHη “ xHyHξ `
ÿ

FPΣ

xHyF ξF “ xHyHξ “ xHψ
M
Hϕ

M
H pξq “ ψM

H

`

x∅ϕ
M
H pξq

˘

.

Since ψM
H is injective, we have x∅ϕM

H pξq “ 0 P CHpMHq. By Lemma 5.2, it follows that ϕM
H pξq is in

the ideal xyKzH | K ą Hy Ď CHpMHq. Applying ψM
H , we see that yHξ “ ψM

Hϕ
M
H pξq is in the ideal

xyK | K ą Hy Ď CHpMq. By the maximality of H , any flat K strictly containing H is in Σ. Thus,
yH is in ΥΣ ¨ CHpMq, and we conclude that η is in ΥΣ ¨ CHpMq. �

5.2. Stalks and costalks. For an order filter Σ and a graded HpMq-module N, we define

NΣ – ΥΣ ¨N and NΣ – tn P N | ΥΣ ¨ n “ 0u.

Clearly, if Σ1 Ď Σ, then NΣ1 Ď NΣ and NΣ Ď NΣ1 .

Definition 5.5. We define the stalk of N at F to be the quotient

NF –
NěF rrkF s

NąF rrkF s
.
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Dually, we define the costalk of N at F to be the quotient

NrF s –
NąF

NěF
.

Both the stalk and costalk give endofunctors on the category of graded HpMq-modules, and
multiplication by yF induces a natural transformation from the costalk functor to the stalk functor.
Note also that Nr∅s “ socpNq.

Lemma 5.6. For any graded HpMq-module N, we have canonical isomorphisms

NF – pyFNrrkF sq∅ and NrF s – pyFNrrkF sqr∅s.

Proof. The first statement follows from

NF “
NěF rrkF s

NąF rrkF s
“
pyFNqě∅rrkF s

pyFNqą∅rrkF s
– pyFNq∅rrkF s – pyFNrrkF sq∅

The second statement follows from

NrF s “
NąF

NěF
– yFNąF rrkF s “ pyFNqą∅rrkF s “ pyFNqr∅srrkF s – pyFNrrkF sqr∅s. �

For any graded HpMq-module N, we write N˚ for HomQpN,Qq. Note that N˚ has a natural
graded HpMq-module structure.

Lemma 5.7. For any graded HpMq-module N and any flat F , we have a canonical isomorphism of
graded HpMq-modules

pNF q
˚ – pN˚qrF s.

Proof. We first prove the lemma when F “ ∅. The module pN∅q
˚ is equal to the submodule of N˚

consisting of functions that vanish on Ną∅, which is the same as pN˚qr∅s.

Now consider an arbitrary flat F . By Lemma 5.6 and the case that we just proved, we have

pNF q
˚ –

`

pyFNrrkF sq∅
˘˚
–

`

pyFNrrkF sq˚
˘

r∅s – pyFNq˚r´ rkF sr∅s.

Since multiplication by yF is an HpMq-module homomorphism of degree rkF , we have

pyFNq˚r´ rkF s – yF pN
˚qrrkF s.

Therefore, we have

pNF q
˚ –

`

yF pN
˚qrrkF s

˘

r∅s – pN
˚qrF s,

where the second isomorphism follows from Lemma 5.6. �
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5.3. Pure modules. We say that a graded HpMq-module N is pure if it is isomorphic to a direct
sum of direct summands of modules of the form CHpMF qrks, where F P LpMq and k P Z. Fix an
ordering tF1, . . . , Fru of LpMq refining the natural partial order, so that for any k, the set

Σk – tFk, . . . , Fru

is an order filter. Note that we have natural inclusions ΥěFk Ď ΥΣk and ΥąFk Ď ΥΣk`1
.

Proposition 5.8. Let N be a pure graded HpMq-module.

(1) For all k, the above inclusions induce an isomorphism

NFk “
NěFkrrkFks

NąFkrrkFks
–
ÝÑ

NΣkrrkFks

NΣk`1
rrkFks

.

(2) For all k, the above inclusions induce an isomorphism

NΣk`1

NΣk

–
ÝÑ

NąFk

NěFk
“ NrFks.

Proof. The desired properties are preserved under taking direct sums, passing to direct sum-
mands, and shifting degree, so we may assume that N “ CHpMF q for some flat F . If F ğ Fk,
then the source and target of both maps are zero, so both statements are trivial. Thus we may
assume that F ě Fk. Notice that if we replace M by MF and each order filter of LpMq by its in-
tersection with LpMF q, none of the modules in the formulas change. So without loss of generality,
we can also assume that F “ E, that is, MF “ M.

Since CHpMqΣk “ CHpMqěFk ` CHpMqΣk`1
, the first map is surjective. To show that the first

map is injective, notice that

CHpMqěFk X CHpMqΣk`1
“ CHpMq ¨ΥěFk X CHpMq ¨ΥΣk`1

“ AnntxG | G ğ Fku XAnntxG | G R Σk`1u

“ AnntxG | G ą Fku

“ CHpMq ¨ΥąFk

“ CHpMqąFk ,

where the second and fourth equalities follow from Lemma 5.4 and the third equality follows from
the fact that tG | G ą Fku “ Σk`1 X tG | G ě Fku. Thus, the first map is an isomorphism.
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Since CHpMqΣk`1XCHpMqěFk “ CHpMqΣk , the second map is injective. To show that the second
map is surjective, notice that

CHpMqΣk`1 ` CHpMqěFk “ Ann ΥΣk`1
`Ann ΥěFk

“ CHpMq ¨ txG | G R Σk`1u ` CHpMq ¨ txG | G ğ Fku

“ CHpMq ¨ txG | G ą Fku

“ Ann ΥąFk

“ CHpMqąFk ,

where the second and fourth equalities follow from Lemma 5.4 and the third equality follows from
the fact that Σk “ Σk`1 Y tG | G ě Fku. Thus, the second map is an isomorphism. �

5.4. Orlik–Solomon algebra. For a matroid M with ground set E, we recall the definition and
some basic facts about the Orlik–Solomon algebra of M. We refer to [OT92, Section 3.1] for more
details.

Let E1 be the vector space over Q with basis teiuiPE , and let E be the exterior algebra generated
by E1. Define a degree ´1 linear map BE : E Ñ E by setting BE1 “ 0, BEei “ 1, and

BEpei1 ¨ ¨ ¨ eilq “
l
ÿ

k“1

p´1qkei1 ¨ ¨ ¨xeik ¨ ¨ ¨ eil for any i1, . . . , il P E.

For any subset S “ ti1, . . . , ilu Ď E, we denote ei1 ¨ ¨ ¨ eil by eS . The Orlik–Solomon algebra of M,
denoted by OSpMq, is the quotient of E by the ideal generated by BEeS for all dependent sets S of
M. The differential B descends to a differential B on OSpMq, and the complex pOSpMq, Bq is acyclic
whenever the rank of M is positive.

For any flat F of M, we define a graded subspace EF of E generated by those monomials eS for
all subsets S Ď E with closure F . Then we have a direct sum decomposition

E “
à

FPLpMq

EF ,

which induces a direct sum decomposition

OSpMq “
à

FPLpMq

OSF pMq.

Moreover, the natural ring map OSpMF q Ñ OSpMq induces an isomorphism of vector spaces

OSrkF pMF q – OSF pMq.
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5.5. The costalk complex. Let N be a graded HpMq-module. For all 0 ď k ď d “ rk M, let

Nk
! –

à

FPLkpMq

OSF pMq
˚ b yFN.

Note that OSF pMq sits entirely in degree rkF and OSF pMq
˚ sits in degree ´ rkF . In particular,

tensoring with OSF pMq
˚ and multiplying by yF has no net effect on degrees.

We define a differential δk : Nk
! Ñ Nk`1

! as follows. If F P LkpMq and G P Lk`1pMq, then the
pF,Gq-component of δk is zero unless F ă G. If F ă G, choose i P GzF so that yG “ yiyF .
Then the pF,Gq-component of δk is given on the first tensor factor by the pF,Gq-component of
B˚ : OSF pMq

˚ Ñ OSGpMq
˚ and on the second tensor factor by multiplication by yi.

Proposition 5.9. If N is pure, then H0pN‚! q – Nr∅s and HmpN‚! q “ 0 for all m ą 0.

Proof. Choose a total order on LpMq and define order filters Σk as in Section 5.3. Consider the
filtration

0 “ pNΣ1q‚! Ď ¨ ¨ ¨ Ď pN
Σrq‚! Ď pN

Σr`1q‚! “ N‚!

obtained by applying the functor p¨q‚! to the filtration 0 “ NΣ1 Ď ¨ ¨ ¨ Ď NΣr Ď NΣr`1 “ N.

We claim that the quotient complex
pNΣk`1q‚!

pNΣkq‚!

is acyclic when k ‰ 1, and when k “ 1, it is quasi-isomorphic to the module Nr∅s concentrated
in homological degree zero. Given the claim, the desired result then follows from the spectral
sequence relating the cohomology of a filtered complex to the cohomology of its associated graded
complexes.

To show the above claim, we consider the short exact sequence

0 Ñ NΣkYΣěF Ñ NΣk ¨yF
ÝÑ yFNΣk Ñ 0,

for any k and any flat F . Taking the quotient of the sequence for k ` 1 by the sequence for k, we
obtain a short exact sequence

0 Ñ
NΣk`1YΣěF

NΣkYΣěF
Ñ

NΣk`1

NΣk
Ñ

yFNΣk`1

yFNΣk
Ñ 0.

By Proposition 5.8 (2), the middle term of this sequence is isomorphic to NrFks. If F ď Fk`1, then
Σk`1YΣěF “ ΣkYΣěF , and the first term in our sequence is therefore zero. On the other hand, if
F ę Fk`1, then Proposition 5.8 (2) implies that the first term of our sequence is NrFks, and therefore
that the first map in our sequence is an isomorphism. Putting these two observations together, we
conclude that

yFNΣk`1

yFNΣk
–

$

&

%

NrFks if F ď Fk`1

0 otherwise.
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It follows that there is an isomorphism of complexes

pNΣk`1q‚!

pNΣkq‚!
– OSpMFkq˚ bNrFks,

where the right-hand side has the differential B˚b idNrFks
. Therefore, the complex is acyclic unless

rk MFk “ 0. This happens only when k “ 1, in which case the quotient complex has only the
module NrF1s “ Nr∅s in homological degree zero. �

6. INTERSECTION COHOMOLOGY AS A MODULE OVER THE GRADED MÖBIUS ALGEBRA

The intersection cohomology IHpMq Ď CHpMq is a graded HpMq-module. In addition, for any
flatF , the ring homomorphismϕM

F : CHpMq Ñ CHpMF q induces a natural HpMq-module structure
on CHpMF q. In this section, we apply some of the constructions from Section 5 to these modules.

For most of the remainder of the paper, we will prove very few absolute statements. Most of
what we prove will be of the form “If X holds, then so does Y.” At the end, we will use all of these
results in a modular way to complete our inductive proof of Theorem 3.16.

Remark 6.1. The three main results of this section are Proposition 6.3, Corollary 6.5, and Propo-
sition 6.6. Each of these statements has two parts, the first pertaining to the module IHpMq and
the second pertaining to the module IH˝pMq. We note that only the second parts of these three
statements will be used in our large induction. The first parts require that we know CDpMq, and
will only be applied after the induction is complete. This was alluded to earlier in Remark 1.8.

6.1. Stalks and costalks of the intersection cohomology modules.

Lemma 6.2. Let F be a nonempty flat such that CDpMF q holds.

(1) If CDpMq holds, then ϕM
F IHpMq “ IHpMF q and we have a graded HpMq-module isomorphism

yF IHpMq – IHpMF qr´ rkF s.

(2) If CD˝pMq holds, then ϕM
F IH˝pMq “ IHpMF q and we have a graded HpMq-module isomor-

phism yF IH˝pMq – IHpMF qr´ rkF s.

Proof. For any nonempty proper flat G of M, we apply ϕM
F to the direct summand ψGMJpMGq b

CHpMGq. By [BHM`20, Proposition 2.23], if G ğ F , then

ϕM
F ψ

G
MJpMGq b CHpMGq “ 0.

By Lemma 3.6 (2), if G ě F , then

ϕM
F ψ

G
MJpMGq b CHpMGq “ ψ

GzF
MF

JpMGq b CHpMG
F q.
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Therefore, we have

ϕM
F

´

à

GăE

ψGMJpMGq b CHpMGq

¯

“
à

FďGăE

ψ
GzF
MF

JpMGq b CHpMG
F q.

By Lemma 3.6 (1), we also have ϕM
F IHpMq Ď ϕM

F IH˝pMq Ď IHpMF q. Therefore, the map ϕM
F is

compatible with the canonical decompositions in the sense that it maps IHpMq to IHpMF q and
it maps the sum of the smaller summands to the sum of the smaller summands. Since ϕM

F is
surjective, it must restrict to a surjective map from IHpMq to IHpMF q, so ϕM

F IHpMq “ IHpMF q.
Applying the injective map ψM

F to this equality, we obtain the second part of statement (1). The
proof of statement (2) is identical. �

Proposition 6.3. Suppose that F is a proper flat for which CDpMF q, PDpMF q, and NSpMF q hold.

(1) If CDpMq holds, then the costalk IHpMqrF s vanishes in degrees less than or equal to pcrkF q{2

and the stalk IHpMqF vanishes in degrees greater than or equal to pcrkF q{2. In particular,
IHpMqrF s Ñ IHpMqF is the zero map.

(2) Suppose in addition that F ‰ ∅. If CD˝pMq holds, then the costalk IH˝pMqrF s vanishes in
degrees less than or equal to pcrkF q{2 and the stalk IH˝pMqF vanishes in degrees greater than
or equal to pcrkF q{2. In particular, IH˝pMqrF s Ñ IH˝pMqF is the zero map.

Proof. For any nonempty proper flat F , it follows from Lemmas 5.6 and 6.2 (2) that

IH˝pMqrF s –
`

yF IH˝pMqrrkF s
˘

r∅s – IHpMF qr∅s.

Thus, NSpMF q implies that IH˝pMqrF s vanishes in degrees less than or equal to pcrkF q{2. Similarly,
we have

IH˝pMqF –
`

yF IH˝pMqrrkF s
˘

∅ – IHpMF q∅.

By PDpMF q, there is a natural isomorphism IHpMF q
˚ – IHpMF qrcrkF s of HpMq-modules. Then

by Lemma 5.7, we have

IHpMF q∅ –
`

pIHpMF q
˚qr∅s

˘˚
–

`

IHpMF qr∅srcrkF s
˘˚
.

By NSpMF q, it follows that IHpMF qr∅s vanishes in degrees less than or equal to pcrkF q{2, and
hence IHpMF qr∅srcrkF s vanishes in degrees less than or equal to ´pcrkF q{2. Thus, IH˝pMqF –

IHpMF qr∅srcrkF s˚ vanishes in degrees greater than or equal to pcrkF q{2.

This concludes the proof of statement (2). WhenF is a nonempty flat, the proof of (1) is identical.
When F “ ∅, NSpMq implies that IHpMqr∅s vanishes in degrees less than or equal to d{2. By
PDpMq, IHpMq∅ vanishes in degrees greater than or equal to d{2. �

Remark 6.4. If we do not know CDpMq, PDpMq, and NSpMq but we know CDă
d
2 pMq, PDă

d
2 pMq, and

NSă
d
2 pMq, then the argument for Proposition 6.3 (1) implies that the costalk IHpMqr∅s vanishes in

degrees less than d{2 and the stalk IHpMq∅ vanishes in degrees greater than d{2.
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Corollary 6.5. Let F and G be flats of M.

(1) Suppose that for any flats F 1 ă F (respectively G1 ă G), the conditions CD, PD, and NS hold
for the matroid MF

F 1 (respectively MG
G1). Let ρ : IHpMF q Ñ IHpMGqrks be a map of graded

HpMq-modules. If F ‰ G, or if F “ G and k ‰ 0, then the induced stalk/costalk maps

ρF : IHpMF qF Ñ IHpMGqrksF and ρrGs : IHpMF qrGs Ñ IHpMGqrksrGs

are both zero.

(2) Suppose that F and G are nonempty and that for any flats F 1 ă F (respectively G1 ă G), the
conditions CD˝, PD˝, and NS˝ hold for the matroid MF

F 1 (respectively MG
G1). Let ρ : IH˝pM

F q Ñ

IH˝pM
Gqrks be a map of graded H˝pMq-modules. If F ‰ G, or if F “ G and k ‰ 0, then the

induced stalk/costalk maps

ρF : IH˝pM
F qF Ñ IH˝pM

GqrksF and ρrGs : IH˝pM
F qrGs Ñ IH˝pM

GqrksrGs

are both zero.

Proof. For statement (1), we first observe that yF IHpMF q – Qr´ rkF s, and hence Lemma 5.6 im-
plies that

IHpMF qF – Q∅ – Q and IHpMF qrF s – Qr∅s – Q,

with the induced map between them being the identity. When F “ G and k ‰ 0, the statement
follows immediately from this observation.

Now assume that F ‰ G. To show the vanishing of ρF , we may further assume that F ă G, as
otherwise we would have IHpMGqF “ 0. Consider the following commutative diagram:

IHpMF qrF s IHpMF qF

IHpMGqrksrF s IHpMGqrksF .

ρrF s ρF

The top map is an isomorphism by the observation in the previous paragraph and the bottom map
is zero by Proposition 6.3 applied to the matroid MG, so ρF “ 0.

To show the vanishing of ρrGs, consider the following commutative diagram:

IHpMF qrGs IHpMF qG

IHpMGqrksrGs IHpMGqrksG.

ρrGs ρG

Now the bottom map is an isomorphism and the top map is zero, so ρrGs “ 0.

Statement (2) follows from the same arguments. �
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6.2. Indecomposability.

Proposition 6.6. Let M be a matroid with ground set E.

(1) Suppose that CDpMF q and NSpMF q hold for all proper flats F . Any endomorphism of the
graded HpMq-module IHpMq that induces the zero map on the stalk IHpMqE is in fact the zero
endomorphism of IHpMq. In particular, IHpMq has only scalar automorphisms, and is therefore
indecomposable as an HpMq-module.

(2) Suppose that E is nonempty, CD˝pMq holds, and CDpMF q and NSpMF q hold for all nonempty
proper flats F . Any endomorphism of the graded H˝pMq-module IH˝pMq that induces an au-
tomorphism of the stalk IH˝pMqE is in fact an automorphism of IH˝pMq. In particular, IH˝pMq

is indecomposable as an H˝pMq-module.

Proof. For statement (1), we proceed by induction on the cardinality of the ground set E. When
E is empty or consists of a singleton, the proposition is trivial. Let f be an endomorphism of
IHpMq that induces the zero map on IHpMqE . For each rank one flat G, Lemma 6.2 (1) implies
that yG IHpMq – IHpMGqr´1s. Since f restricts to an endomorphism of the graded HpMGq-module
IHpMGq that induces the zero map on the stalk IHpMGqEzG – IHpMqE , the inductive hypothesis
implies that f restricts to zero on each submodule yG IHpMq. Thus, the map f : IHpMq Ñ IHpMq

factors through the quotient module IHpMq∅ of IHpMq and lands in the submodule IHpMqr∅s of
IHpMq. But then it must be the zero map by Proposition 6.3 (1). The conclusion that IHpMq has
only scalar automorphisms follows from the fact that IHpMqE – Q is one-dimensional.

Next, we prove statement (2). Suppose that f is an endomorphism, but not an automor-
phism, of IH˝pMq that induces an automorphism of the stalk IH˝pMqE . Since IH˝pMqE – Q is
one-dimensional, the induced automorphism of f on the stalk IH˝pMqE must be a nonzero scalar
multiple, which we denote by c.

By Lemma 6.2 (2), we have yF IH˝pMq – IHpMF qr´ rkF s for any nonempty flat F . By state-
ment (1), the restriction of f to IH˝pMqą∅ “

ř

F‰∅ yF IH˝pMq is equal to multiplication by c.
Choose a nonzero homogeneous element η of minimal degree in the kernel of f . For any nonempty
flat F , we have

cyF η “ fpyF ηq “ yF fpηq “ yF ¨ 0 “ 0.

Thus, yF η “ 0 for any nonempty flat F . By Lemma 5.2, this implies that η is a multiple of x∅ in
CHpMq. By CD˝pMq, IH˝pMq is a direct summand of CHpMq as an H˝pMq-module. Hence, η “ x∅ξ

for some ξ P IH˝pMq. We have

0 “ fpηq “ fpx∅ξq “ x∅fpξq.

Thus fpξq is in the intersection of the annihilator of x∅ and IH˝pMq, which is equal to IH˝pMqą∅.
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Let ξ1 “ fpξq{c. Since ξ1 P IH˝pMqą∅, we have fpξ1q “ cξ1 “ fpξq, and hence fpξ ´ ξ1q “ 0. Since

0 ‰ η “ x∅ξ “ x∅pξ ´ ξ
1q,

we have ξ ´ ξ1 ‰ 0. This contradicts the minimality of the degree of η. �

7. ROUQUIER COMPLEXES

In this section, we define for any matroid M four complexes: the big Rouquier complex and
the big reduced Rouquier complex, which are complexes of graded CHpMq-modules; the small
Rouquier complex, which is a complex of graded HpMq-modules; and the small reduced Rouquier
complex, which is a complex of graded H˝pMq-modules.

Remark 7.1. We make an observation about the results of this section that is analogous to the
observation in Remark 6.1. Our main result is Theorem 7.16, and only part (2) of this theorem will
be part of our large induction. Part (1), which is in some sense the more natural statement, can
only be established later, once we have proved CDpMq.

7.1. The big complexes. Consider the graded CHpMq-module

CipMq–
à

∅ďF1ă¨¨¨ăFiăE

xF1 ¨ ¨ ¨xFi CHpMqris

for i ą 0 and C0pMq– CHpMq, along with the module homomorphism

Bi : CipMq Ñ Ci`1pMq

defined component-wise by multiplication by a variable:

xF1 ¨ ¨ ¨yxFj ¨ ¨ ¨xFi`1 CHpMqris
p´1qjxFj
ÝÝÝÝÝÝÑ xF1 ¨ ¨ ¨xFi`1 CHpMqri` 1s.

It is straightforward to check that Bi`1 ˝ Bi “ 0, and hence pC‚, Bq is a complex of graded CHpMq-
modules. We call this complex the big Rouquier complex.

If E is nonempty, we define the big reduced Rouquier complex C‚˝pMq to be the quotient of the
big Rouquier complex by the subcomplex consisting of terms with F1 “ ∅. In other words, it is
defined by

Ci
˝pMq–

à

∅ăF1ă¨¨¨ăFiăE

xF1 ¨ ¨ ¨xFi CHpMqris,

for i ą 0 and C0
˝pMq – CHpMq. The differential of C‚˝pMq is given by the same formula as in

C‚pMq.
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7.2. Basic properties.

Lemma 7.2. Let F be a flat of a loopless matroid M.

(1) We have an isomorphism

yFC‚pMq – C‚pMF qr´ rkF s

of complexes of graded CHpMq-modules, where CHpMq acts on the right-hand side via the
graded algebra homomorphism ϕM

F : CHpMq Ñ CHpMF q.

(2) If F is nonempty, we also have an isomorphism

yFC‚˝pMq – C‚pMF qr´ rkF s

of complexes of graded CHpMq-modules.

Proof. The first statement follows from the fact that ψM
F : CHpMF qr´ rkF s Ñ yF CHpMq is an

isomorphism of graded CHpMq-modules [BHM`20, Proposition 2.25]. Since x∅yF “ 0 for any
nonempty flat F , the projection from C‚pMq to C‚˝pMq becomes an isomorphism after multiplying
by yF , and hence the second statement follows from the first one. �

Lemma 7.3. For all i ą 0 and proper flats F1 ă ¨ ¨ ¨ ă Fi, xF1 ¨ ¨ ¨xFi CHpMqris is isomorphic as an
HpMq-module to a direct sum of shifted copies of CHpMF1q. In particular, both CipMq and Ci

˝pMq

are pure HpMq-modules.

Proof. Using [BHM`20, Proposition 2.19] repeatedly, we have an isomorphism of HpMq-modules

xF1 ¨ ¨ ¨xFi CHpMqris – CHpMFiq b CHpMFi
Fi´1

q b ¨ ¨ ¨ b CHpMF2
F1
q b CHpMF1q,

where the HpMq-module structure on the right-hand side is induced by the HpMq-module structure
on CHpMF1q induced by the composition HpMq Ñ CHpMq Ñ CHpMF1q, where the second map is
the composition of ϕF1

M with the map from CHpMF1q b CHpMF1q to CHpMF1q given by killing all
classes of positive degree in the left-hand factor. Thus, the lemma follows. �

Corollary 7.4.

(1) If CDpMF q holds for all flats F of M, then CipMq is isomorphic to a direct sum of shifts of
graded HpMq-modules of the form IHpMGq. The module IHpMq appears only in C0pMq, where
it appears exactly once and without a shift.

(2) If E is nonempty and CD˝pM
F q holds for all nonempty flats F , then Ci

˝pMq is isomorphic to
a direct sum of shifts of graded H˝pMq-modules of the form IH˝pM

Gq for nonempty G. The
module IH˝pMq appears only in C0

˝pMq, where it appears exactly once and without a shift.
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Proof. Given any flat F , we can apply the canonical decomposition CD repeatedly for various
localizations of M to deduce that the HpMq-module CHpMF q is isomorphic to a direct sum of
modules of the form IHpMGqrks for G ď F and k P Z. If we apply the coarser decomposition CD˝

instead of CD, then the same argument proves statement (2). �

Lemma 7.5.

(1) If F is a proper flat, then the stalk complex C‚pMqF is acyclic. The stalk complex C‚pMqE is
quasi-isomorphic to Q concentrated in degree zero.

(2) If F is a nonempty proper flat, the stalk complex C‚˝pMqF is acyclic. If E is nonempty, the stalk
complex C‚˝pMqE is quasi-isomorphic to Q concentrated in degree zero.

Remark 7.6. Lemma 7.5 does not tell us anything about the stalk of C‚˝pMq at the empty flat. This
will be the subject of Proposition 7.13.

Proof. We begin by proving statement (1) when F is the empty flat. We observe that multiplication
by x∅ defines a map of complexes

C‚˝pMq Ñ x∅C‚˝pMqr1s,

and (after shifting by 1 in cohomological degree) the cone of this map is isomorphic to C‚pMq. To
prove that C‚pMq∅ is acyclic, it is therefore sufficient to prove that for all i, the map from Ci

˝pMq

to x∅Ci
˝pMqr1s induces an isomorphism on stalks at the empty flat. This follows from Lemmas 5.2

and 7.3.

Next we prove statement (1) for arbitrary proper flats. By Lemmas 5.6 and 7.2,

C‚pMqF – pyFC‚pMqrrkF sq∅ – C‚pMF q∅.

Since F is proper, MF has positive rank, and the statement follows from the previous paragraph.

It follows from the definition of C‚pMq that C‚pMqE “ yEC‚pMqrds is quasi-isomorphic to a
single copy of Q in both homological and grading degree zero, which implies the second sentence
of (1).

For any nonempty flat F , we have yFx∅ “ 0. Therefore, the natural quotient C‚pMq Ñ C‚˝pMq

induces an isomorphism on the stalk at F . Thus, statement (2) follows from statement (1). �

Proposition 7.7. The complex C‚pMq is acyclic except in degree zero, and H0pC‚pMqq – Qr´ds.

Proof. Let Σk be a family of order filters defined as in Section 5.3. By Proposition 5.8, we have

C‚pMqΣk{C
‚pMqΣk`1

– C‚pMqFkr´ rkFks,
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which is acyclic for all 1 ď k ă r and quasi-isomorphic to Qr´ds in degree zero when k “ r

by Lemma 7.5. The result then follows from the spectral sequence relating the cohomology of a
filtered complex to the cohomology of its associated graded. �

Proposition 7.8. For any j, we have Hj
`

C‚pMqr∅s
˘

– OSjpMq˚r´ds.

Proof. Let C‚pMq‚! be the double complex obtained by applying the construction of Section 5.5
to each term in the big Rouquier complex. By Proposition 5.9, the i-th column of this double
complex has no cohomology in positive degree, and its cohomology in degree zero is isomorphic
to CipMqr∅s. In particular, this implies that C‚pMqr∅s is quasi-isomorphic to the total complex of
C‚pMq‚! .

On the other hand, the j-th row of the double complex is equal to the direct sum over all flats
F of rank j of

OSF pMq
˚ b yFC‚pMq – OSF pMq

˚ b C‚pMF qr´ rkF s.

By Proposition 7.7, the j-th row has no cohomology in positive (cohomological) degree, and its
cohomology in (cohomological) degree zero is isomorphic to

à

FPLjpMq

OSF pMq
˚r´ds – OSjpMq˚r´ds.

Note that this graded vector space is concentrated in (grading) degree d´ j, which means that the
differential from the degree zero cohomology of the j-th column to the degree zero cohomology
of the pj ` 1q-st column vanishes for degree reasons. In particular, this implies that the complex
OS‚pMq˚r´dswith zero differential is quasi-isomorphic to the total complex of C‚pMq‚! .

Putting together the two paragraphs above, we can conclude the proof. �

Corollary 7.9. Let F be a flat, and let j be a nonnegative integer.

(1) We have Hj
`

C‚pMqrF s
˘

– OSjpMF q
˚r´ crkF s.

(2) If F is nonempty, then Hj
`

C‚˝pMqrF s
˘

– OSjpMF q
˚r´ crkF s.

Proof. By Lemma 5.6 and Lemma 7.2 (1),

C‚pMqrF s – pyFC‚pMqrrkF sqr∅s – C‚pMF qr∅s.

Statement (1) then follows from Proposition 7.8. Similarly, we can deduce statement (2) using
Lemma 7.2 (2), which says that yFC‚pMq – yFC‚˝pMqwhen F is nonempty. �
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7.3. The stalk of the big reduced Rouquier complex at the empty flat. Throughout this section,
we assume that E is nonempty. Our goal is to give a degree bound on the cohomology of the
complex C‚˝pMq∅.

Given a complex Q‚ of graded HpMq-modules, we denote by ∆pQ‚q the cone of the natural map
Q‚´1
r∅s Ñ Q‚´1

∅ . In particular, ∆pQ‚qk “ Qk
r∅s ‘Qk´1

∅ , and we have a distinguished triangle

Q‚´1
r∅s Ñ Q‚´1

∅ Ñ ∆pQ‚q Ñ Q‚r∅s.

Lemma 7.10. The natural map ∆pC‚pMqq Ñ C‚pMqr∅s is a quasi-isomorphism.

Proof. This follows from the first part of Lemma 7.5, which says that C‚pMq∅ is acyclic. �

Lemma 7.11. The map C‚pMq Ñ C‚˝pMq induces a quasi-isomorphism ∆pC‚pMqq Ñ ∆pC‚˝pMqq.

Proof. Let C‚´ be the kernel of C‚pMq Ñ C‚˝pMq. In other words, the complex C‚´pMq is defined by

Ci
´pMq–

à

∅“F1ă¨¨¨ăFiăE

xF1 ¨ ¨ ¨xFi CHpMqris,

and with differential defined by the same component-wise formula as in the definition of C‚pMq.
The big Rouquier complex C‚pMq is isomorphic to the mapping cone of the map C‚´1

˝ pMq Ñ

C‚´pMq, which is the direct sum of

xF1 ¨ ¨ ¨xFi CHpMqris
´x∅
ÝÝÝÑ x∅xF1 ¨ ¨ ¨xFi CHpMqri` 1s

over all flags ∅ ă F1 ă ¨ ¨ ¨ ă Fi ă E. Thus, the mapping cone of C‚pMq Ñ C‚˝pMq is chain ho-
motopy equivalent to C‚`1

´ pMq, and hence the cone of ∆pC‚pMqq Ñ ∆pC‚˝pMqq is chain homotopy
equivalent to ∆pC‚`1

´ pMqq.

Since C‚´pMq is annihilated by Υą∅, we have C‚´pMqr∅s “ C‚´pMq “ C‚´pMq∅ and therefore
the cohomology of ∆pC‚´pMqq is zero in every degree. Thus, the cohomology of the cone of
∆pC‚pMqq Ñ ∆pC‚˝pMqq is zero in every degree. Equivalently, the map ∆pC‚pMqq Ñ ∆pC‚˝pMqq is
a quasi-isomorphism. �

Lemma 7.12. The complex ∆pC‚˝pMqq is quasi-isomorphic to the cone of the map of complexes
C‚´1
˝ pMq∅r´1s Ñ C‚´1

˝ pMq∅ given by multiplication by x∅.

Proof. By Lemma 5.2, the annihilator of Υą∅ in CHpMF q is equal to x∅ CHpMF q for all nonempty
flats F . Thus we have

CHpMF qr∅s – x∅ CHpMF q – CHpMF q∅r´1s.

By Lemma 7.3, each Ci
˝pMq is isomorphic to a direct sum of shifts of such modules, therefore

C‚´1
˝ pMqr∅s – C‚´1

˝ pMq∅r´1s.

The lemma then follows from the definition of ∆. �
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Proposition 7.13. Suppose that d ą 0. Then the graded H˝pMq-module HipC‚˝pMq∅q is concen-
trated in degree d´ 1´ i.

Proof. Combining Lemmas 7.10, 7.11, and 7.12, it follows that C‚pMqr∅s is quasi-isomorphic to the
cone of the map C‚´1

˝ pMq∅r´1s Ñ C‚´1
˝ pMq∅ given by multiplication by x∅. This induces a long

exact sequence

¨ ¨ ¨ Ñ Hi
`

C‚pMqr∅s
˘

Ñ Hi
`

C‚˝pMq∅
˘

r´1s
¨x∅
ÝÝÑ Hi

`

C‚˝pMq∅
˘

Ñ Hi`1
`

C‚pMqr∅s
˘

Ñ ¨ ¨ ¨ .

If HipC‚˝pMq∅q ‰ 0, let k be the smallest degree in which it does not vanish. That degree is not in the
image of multiplication by x∅, so the long exact sequence implies that Hi`1pC‚pMqr∅sq is nonzero
in degree k. But that implies that k “ d ´ pi ` 1q by Proposition 7.8. Dually, if k is the largest
nonvanishing degree, then it is killed by x∅, and our exact sequence implies that HipC‚pMqr∅sq is
nonzero in degree k ` 1, so we get k ` 1 “ d ´ i again by Proposition 7.8. Thus, the proposition
follows. �

7.4. The small complexes. We begin with a standard lemma in homological algebra.

Lemma 7.14. Suppose that pC‚, Bq is a complex in some abelian category and we have direct sum
decompositions of two consecutive objects

Ck “ Pk ‘Qk and Ck`1 “ Pk`1 ‘Qk`1

for some k with the property that the composition

Pk ãÑ Ck Bk

ÝÑ Ck`1 � Pk`1

is an isomorphism. Then pC‚, Bq has as a direct summand a two-step acyclic complex whose k-th
and pk ` 1q-st graded pieces are isomorphic to Pk.

Proof. First, we can replace Pk`1 by the image of Pk in Ck`1. It is easy to check that the direct sum
decomposition still holds, and now the differential sends Pk to Pk`1 isomorphically. Next, replace
Qk by the kernel of the composition Ck Ñ Ck`1 � Pk`1. It is again easy to check that our direct
sum decomposition still holds and that the differential sends Qk to Qk`1. Now the differential
Bk´1 : Ck´1 Ñ Ck has image contained in ker Bk, which is contained in Qk, and Bk`1pPk`1q “

Bk`1BkPk “ 0. So we obtain the desired direct sum of complexes. �

Regarding C‚pMq as a complex of graded HpMq-modules, we split off as many two-term acyclic
complexes as possible until there do not exist k, Pk ‰ 0, Pk`1, Qk, and Qk`1 such that the hy-
potheses of Lemma 7.14 hold. We call the resulting complex C̄‚pMq Ď C‚pMq the small Rouquier
complex. If E is nonempty, applying the same construction to C‚˝pMq in the category of graded
H˝pMq-modules, we obtain the small reduced Rouquier complex C̄‚˝pMq Ď C‚˝pMq. The important
features of these complexes are as follows:
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(1) For any flat F , we have quasi-isomorphisms

C̄‚pMqF » C‚pMqF , C̄‚pMqrF s » C‚pMqrF s, C̄‚˝pMqF » C‚˝pMqF , and C̄‚˝pMqrF s » C‚˝pMqrF s. (1)

(2) If P is a nonzero direct summand of C̄kpMq (respectively C̄k
˝pMq), it is not possible to find an

inclusion of P into C̄k`1pMq (respectively C̄k`1
˝ pMq) as a direct summand with the property

that the map from P to itself induced by Bk is an isomorphism.

Remark 7.15. Even though the subcomplex C̄‚pMq of C‚pMq depends on the choices of splitting, its
isomorphism class as a complex of HpMq-modules is uniquely determined. In fact, the category
of bounded complexes of finitely generated HpMq-modules is an abelian category in which every
element has finite length. By the Krull–Schmidt theorem, the complex C‚pMq admits a decompo-
sition into a direct sum of indecomposable complexes of HpMq-modules, and the summands are
uniquely determined up to isomorphisms. Removing all two-term acyclic summands, we obtain
C̄‚pMq. For the same reason, the isomorphism class of C̄‚˝pMq as a complex of H˝pMq-modules is
uniquely determined.

7.5. Parity in the small Rouquier complexes. The following theorem says that in a certain sense
the small complexes are “perverse” objects.

Theorem 7.16.

(1) Suppose that CDpMF
Gq, PDpM

F
Gq, and NSpMF

Gq hold for all flats G ă F . Then, for all i, C̄ipMq is
isomorphic to a direct sum of modules of the form IHpMF qrks, where k “ i´crkF

2 is a nonposi-
tive integer. Furthermore, C̄0pMq – IHpMq.

(2) Suppose that E ‰ ∅, that CD˝pMF
Gq and PD˝pM

F
Gq hold for all flats G ă F , and that NS˝pMF

Gq

holds for all flats G ă F ă E. Then, for all i, C̄i
˝pMq is isomorphic to a direct sum of mod-

ules of the form IH˝pM
F qrks, where F is nonempty and k “ i´crkF

2 is a nonpositive integer.
Furthermore, C̄0

˝pMq – IH˝pMq.

Proof. We will give the proof of part p1q; the proof of part (2) is identical. By Proposition 6.6, the
HpMq-modules IHpMF qrks are indecomposable for all flats F . By Corollary 7.4 (1) and the Krull–
Schmidt theorem, the HpMq-module C̄ipMq is isomorphic to a direct sum of modules of the form
IHpMF qrks. Since CipMq vanishes in negative degree, we must have k ď 0. We need to prove that
k “ pi´ crkF q{2.

Assume for the sake of contradiction that we have a summand of C̄ipMq of the form IHpMF qrks

with k ă pi ´ crkF q{2, and take i minimal with the property that such a summand exists. For
such i and such summand IHpMF qrks, the flat F can not be equal to E, because Corollary 7.4
implies that IHpMq appears only in C0pMq with multiplicity one and no shift. Thus F is a proper
flat. By Lemma 7.5 and Equation (1), the complex C̄‚pMqF is acyclic. In particular, the summand



56 TOM BRADEN, JUNE HUH, JACOB P. MATHERNE, NICHOLAS PROUDFOOT, AND BOTONG WANG

IHpMF qrksF Ď C̄ipMqF must either map nontrivially to some summand IHpMGqrlsF Ď C̄i`1pMqF

or receive a nontrivial map from some summand IHpMGqrlsF Ď C̄i´1pMqF .

We first assume that IHpMF qrksF maps nontrivially to some summand IHpMGqrlsF Ď C̄i`1pMqF .
By Corollary 6.5 (1), we must have G “ F and l “ k, and then Proposition 6.6 (1) implies that
this map must come from an isomorphism between the summands IHpMF qrks Ď C̄ipMq and
IHpMF qrks Ď C̄i`1pMq. This contradicts the definition of the small Rouquier complex.

Next, we assume that the summand IHpMF qrksF Ď C̄ipMqF receives a nontrivial map from
some summand IHpMGqrlsF Ď C̄i´1pMqF . We have G ě F , otherwise IHpMGqrlsF “ 0. If G “ F ,
then Corollary 6.5 (1) implies that l “ k, and again we obtain a contradiction from the definition
of the small Rouquier complex. So we may assume that G ą F . Since IHpMF qrksF is concentrated
in degree ´k, Proposition 6.3 (1) applied to the matroid MG implies that

´k ď prkG´ rkF ´ 1q{2´ l “ pcrkF ´ crkG´ 1q{2´ l,

and therefore

l ď k ` pcrkF ´ crkG´ 1q{2 ă pi´ crkF q{2` pcrkF ´ crkG´ 1q{2 “ pi´ 1´ crkGq{2.

This contradicts the minimality of i and therefore completes the proof that k ě pi´ crkF q{2.

Now assume for the sake of contradiction that we have a summand of C̄ipMq of the form
IHpMF qrkswith k ą pi´ crkF q{2, and take i maximal with the property that such a summand ex-
ists. We will make an argument similar to the one that we used above, but now using costalks
instead of stalks. By Corollary 7.9 and Equation (1), the i-th cohomology group of C̄‚pMqrF s
vanishes except in degree crkF ´ i. On the other hand, the costalk IHpMF qrksrF s is nontrivial
only in degree ´k, which by assumption is strictly less than pcrkF ´ iq{2. Since k ď 0, we have
´k ď ´2k ă crkF ´ i. Therefore, the image of IHpMF qrksrF s in the cohomology of C̄‚pMqF

must be zero. In particular, the summand IHpMF qrksrF s Ď C̄ipMqrF s must either map nontrivially
to some summand IHpMGqrlsrF s Ď C̄i`1pMqrF s or receive a nontrivial map from some summand
IHpMGqrlsrF s Ď C̄i´1pMqrF s.

We first assume that IHpMF qrksrF s receives a nontrivial map from some summand IHpMGqrlsrF s
of C̄i´1pMqrF s. By Corollary 6.5 (1), we have G “ F and l “ k, and then Proposition 6.6 (1) implies
that this map must come from an isomorphism between the summands IHpMF qrks Ď C̄i´1pMq

and IHpMF qrks Ď C̄ipMq. This contradicts the definition of the small Rouquier complex.

Next, we assume that the summand IHpMF qrksrF s Ď C̄ipMqrF s maps nontrivially to some sum-
mand IHpMGqrlsrF s Ď C̄i`1pMqrF s. We have G ě F , otherwise IHpMGqrlsrF s “ 0. If G “ F , then
Corollary 6.5 implies that l “ k, and again we obtain a contradiction from the definition of the
small Rouquier complex. So we may assume that G ą F . Since IHpMF qrksrF s is concentrated in
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degree ´k, Proposition 6.3 (1) applied to the matroid MG implies that

´k ě prkG´ rkF ` 1q{2´ l “ pcrkF ´ crkG` 1q{2´ l,

and therefore

l ě k ` pcrkF ´ crkG` 1q{2 ą pi´ crkF q{2` pcrkF ´ crkG` 1q{2 “ pi` 1´ crkGq{2.

This contradicts the maximality of i and therefore completes the proof that k ď pi ´ crkF q{2.
Together with the previous argument, we conclude that k “ pi´ crkF q{2.

Finally, we prove that C̄0pMq – IHpMq. By Proposition 6.6 (1), we know that IHpMq is an in-
decomposable HpMq-module. By Corollary 7.4 (1), C0pMq contains exactly one copy of IHpMq

without shift, and the other CkpMq does not contain any copy of IHpMq with or without shift.
Thus, the summand IHpMq of C0pMq is not cancelled in the definition of C̄‚pMq, and hence C̄0pMq

contains one copy of IHpMq as a direct summand.

The fact that C̄0pMq does not contain IHpMF qrks for any proper flat F follows from a similar
argument to one that we used above. Indeed, suppose C̄0pMq does contain IHpMF qrks for some
proper flat F . Since C̄‚pMqF is acyclic, IHpMF qrksF must map nontrivially to some summand
IHpMGqrlsF Ď C̄1pMqF . By Corollary 6.5, we have G “ F and l “ k, and then Proposition 6.6
(1) implies that this map must come from an isomorphism between the summands IHpMF qrks Ď

C̄0pMq and IHpMF qrks Ď C̄1pMq. This contradicts the definition of the small Rouquier complex,
thus concluding the proof. �

Remark 7.17. With a little extra work, one can show that, if k “ pi ´ crkF q{2 ě 0, then the multi-
plicity of IHpMF qrks in C̄1pMq is equal to the dimension of the degree k piece of the stalk IHpMqF

and the multiplicity of IH˝pM
F qrks in C̄1

˝pMq is equal to the dimension of the degree k piece of the
stalk IH˝pMqF . We will not need this, so we omit the proof.

Corollary 7.18. Suppose that CD˝pMF
Gq holds for all flats G ă F and that NS˝pMF

Gq and NSpMF
Gq

hold for all flats G ă F ă E. Then NSă
d´2

2 pMq holds.

Proof. Consider the complex C̄‚˝pMq∅. Theorem 7.16 (2) implies that

C̄0
˝pMq∅ – IHpMq∅ – IHpMq

and that C̄1
˝pMq∅ is a direct sum of modules of the form

IH˝pM
F qrks∅ – IHpMF qrks,

where F is nonempty and k “ pi´ crkF q{2 ď 0. Applying Proposition 7.13 with i “ 0, it follows
that the kernel of the map

B0
∅ : C̄0

˝pMq∅ Ñ C̄1
˝pMq∅
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is concentrated in degree d ´ 1, which is larger than pd ´ 2q{2. Thus, it suffices to show that
IHpMF qrks has no socle in degrees less than or equal to pd´ 2q{2.

The hypothesis NSpMF q implies that the socle of IHpMF q vanishes in degrees less than or equal
to prkF ´ 2q{2, and therefore the socle of IHpMF qrks vanishes in degrees less than or equal to

prkF ´ 2q{2´ p1´ crkF q{2 “ pd´ 3q{2 “ pd´ 2q{2´ 1{2.

We can therefore conclude NSă
d´2

2 pMq. �

7.6. Multiplicities and inverse Kazhdan–Lusztig polynomials. We now explain how the results
of this section, along with Theorem 3.16, can be used to prove Theorem 1.4. Define a polynomial
Q̃Mptq P Nrtswhose coefficient of tk is the multiplicity of the module IHpM∅qr´ks in C̄d´2kpMq.

Lemma 7.19. Suppose that Theorem 3.16 holds. For any flat F and any integer k, the multiplicity
of IHpMF qr´ks in C̄crkF´2kpMq is equal to the coefficient of tk in Q̃MF

ptq.

Proof. Recall that Lemma 6.2 gives an isomorphism

yF IHpMGqr`s –

$

&

%

IHpMG
F qr`´ rkF s ifF ď G

0 otherwise.

So to find the multiplicity of IHpMF qwith any shift in C‚pMq, it is sufficient to find the multiplicity
of IHpMF

F q in yFC‚pMq. But MF
F “ pMF q

∅ has rank zero, so our result will follow if we can show
there is an isomorphism

yF C̄‚pMq – C̄‚pMF qr´ rkF s.

By Lemma 7.2, we have an isomorphism

yFC‚pMq – C‚pMF qr´ rkF s

for the big Rouquier complexes. Using Lemma 6.2, the indecomposable summands of yFC‚pMq

are in bijection with the summands of C‚pMq of the form IHpMGqr`s with G ě F . By Proposition
6.6, the restriction map

EndHpMq´modpIHpM
Gqq Ñ EndHpMF q´modpyF IHpMGqq

is an isomorphism. Thus, the summands which get canceled from C‚pMF q to form the minimal
complex C̄‚pMF q are exactly the images under multiplication by yF of canceling pairs from C‚pMq.
The result follows. �

Proof of Theorem 1.4, assuming Theorem 3.16. We will prove that QMptq “ Q̃Mptq, which implies that
the coefficients are nonnegative. If the rank d of M is equal to zero, then C‚pMq “ C̄‚pMq has only
one component, which is IHpMq “ IHpM∅q in degree zero. So QMptq “ 1 “ Q̃Mptq in this case.
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When the rank of M is positive, by [GX20, Theorem 1.3], the inverse Kazhdan-Lusztig polyno-
mial of M satisfies

ÿ

FPLpMq

p´1qrkFPMF ptqQMF
ptq “ 0.

Thus, it suffices to show that Q̃Mptq satisfies the displayed recurrence relation when d is positive.

By Lemma 7.5, the complex C‚pMq∅ is acyclic, and since C̄‚pMq∅ is a direct summand of this
complex, it is acyclic as well. By Theorem 7.16 and Lemma 7.19, C̄ipMq∅ is the direct sum of
IHpMF q∅rks for various flats F , where k “ i´crkF

2 is a nonnegative integer. Moreover, the number
of copies of IHpMF q∅rks is equal to the coefficient of tk in Q̃Mptq. Notice that when k “ i´crkF

2 is
an integer, i and crkF have the same parity. Since the Poincaré polynomial of IHpMF q∅ is equal
to PMF ptq, the alternating sum of the Poincaré polynomial of C̄ipMq∅ for all i is equal to

ÿ

FPLpMq

p´1qcrkFPMF ptqQ̃MF
ptq “ p´1qrk M

ÿ

FPLpMq

p´1qrkFPMF ptqQ̃MF
ptq.

Since C̄‚pMq∅ is acyclic, the above sum is equal to zero.

All of the steps of this argument still hold when interpreted equivariantly with respect to any
group of symmetries of M by Lemma A.1 and Definition A.6. �

8. THE SUBMODULES INDEXED BY FLATS

In order to define the modules IHpMq Ď IH˝pMq Ď CHpMq and IHpMq Ď CHpMq, we made use
of the submodules

ψFMJpMF q b CHpMF q Ď CHpMq

for all proper flats F , and the submodules

ψFMJpMF q b CHpMF q Ď CHpMq

for all nonempty proper flats F . The purpose of this section is to understand the relationship
between the intrinsic Poincaré pairings on these pieces and the pairings induced by the inclusions
into the Chow ring and augmented Chow ring of M.

8.1. The Poincaré pairing on the F -submodule. Suppose that

N “
à

0ďi,jďd

Ni,j

is a finite-dimensional bigraded Q-vector space. Suppose that N is equipped with a bilinear pair-
ing x´,´y such that, if µ P Ni,j and b P Nk,l, then xµ, νy ‰ 0 only when i` j ` k ` l “ d. Suppose
that r P N. We say that the pairing is adapted to r if it satisfies the following properties:

(1) dim Ni,j “ dim Nr´i,d´r´j for any 0 ď i ď r and 0 ď j ď d´ r;
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(2) if µ P Ni,j , ν P Nk,l, and i` k ă r, then xµ, νy “ 0.

We define the r-reduction of the original pairing to be the new pairing x´,´yr defined by

xµ, νyr –
ÿ

i,j,k,l
i`k“r

xµij , νkly,

where µij is the projection of µ to Ni,j , and similarly for νkl.

Lemma 8.1. Suppose that the bilinear form x´,´y is adapted to r. Then x´,´yr is non-degenerate
if and only if x´,´y is non-degenerate.

Proof. This translates to the statement that if a matrix is block upper triangular and its block diag-
onal part is nonsingular, then the original matrix is nonsingular. �

The following lemma is an immediate consequence of the definitions.

Lemma 8.2. Suppose that PDpMq, HLpMq, and HRpMq all hold. Then JpMqr´1s satisfies Poincaré
duality, hard Lefschetz, and Hodge–Riemann, all of degree d, with respect to the hard Lefschetz
operator

Ld´2k : JpMqr´1sk “ Jk´1pMq Ñ Jd´k´1pMq “ JpMqr´1sd´k, η ÞÑ βd´2kη

and the Poincaré pairing

xη, ξyJpMqr´1s “ ´degMpβ η ξq.

Let F be a proper flat, and consider the bigraded vector space JpMF qr´1s b CHpMF q. This
vector space has two natural bilinear pairings. The first, which we denote x¨, ¨yJpMF qr´1sbCHpMF q,
is the tensor product of the Poincaré pairings on JpMF qr´1s and CHpMF q. The second, which we
denote x¨, ¨yCHpMq, is the restriction of the Poincaré pairing on CHpMq via the inclusion

JpMF qr´1s b CHpMF q Ñ CHpMq

induced by ψFM, which matches the total grading on the source with the grading on the target.
Similarly, the bigraded vector space JpMF qr´1s b CHpMF q has two natural bilinear pairings. The
first, which we denote x¨, ¨yJpMF qr´1sbCHpMF q, is the tensor product of the Poincaré pairings on
JpMF qr´1s and CHpMF q. The second, which we denote x¨, ¨yCHpMq, is the restriction of the Poincaré
pairing on CHpMq via the inclusion

JpMF qr´1s b CHpMF q Ñ CHpMq

induced by ψFM.

Proposition 8.3. Let r “ crkF .
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(1) The pairing x¨, ¨yJpMF qr´1sbCHpMF q on JpMF qr´1sbCHpMF q is adapted to r, and its r-reduction
is equal to the pairing x¨, ¨yCHpMq.

(2) The pairing x¨, ¨yJpMF qr´1sbCHpMF q on JpMF qr´1sbCHpMF q is adapted to r, and its r-reduction
is equal to the pairing x¨, ¨yCHpMq.

Proof. We prove only part (1); the proof of part (2) is identical. The first condition for adaptedness
follows from the Poincaré duality statements of Lemma 8.2 and Theorem 2.19. For the second
condition, let

µ P Jr´1sipMF q b CHjpMF q “ Ji´1pMF q b CHjpMF q

and

ν P Jr´1skpMF q b CHlpMF q “ Jk´1pMF q b CHlpMF q.

By Lemma 2.17 (1), we have

xµ, νyCHpMq “ degM

`

ψFMµ ¨ ψ
F
Mν

˘

“ ´degMF
b degMF

`

pβMF
b 1` 1b αMF qµν

˘

.

If i` k ă r, then

pβMF
b 1` 1b αMF qµν P CHăcrkpF q´1pMF q b CHpMF q

and hence xµ, νyCHpMq “ 0. This proves that the first pairing is adapted to r. If i` k “ r, then

p1b αMF qµν P CHr´2pMF q b CHpMF q,

hence we have

xµ, νyCHpMq “ ´degMF
b degMF

`

pβMF
b 1qµν

˘

“ xµ, νyJpMF qr´1sbCHpMF q.

This completes the proof. �

8.2. Things we get for free. In this section we use Proposition 8.3 to show that some statements
follow immediately from the assumption that Theorem 3.16 holds for smaller matroids. Assume
throughout the section that E is nonempty.

Corollary 8.4. Assume that all of the statements of Theorem 3.16 hold for MF for every nonempty
proper flat F . Then the statements PD˝pMq, PDpMq, CD˝pMq, and CDpMq hold.

Proof. By Proposition 3.7, the subspaces ψFMJpMF qbCHpMF q are mutually orthogonal as F varies
through all nonempty proper flats of M. By Lemmas 8.1 and 8.2, Proposition 8.3, and Theorem 2.19
(1), the restriction of the Poincaré pairing on ψFMJpMF q b CHpMF q Ď CHpMq is non-degenerate.
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These statements imply that the sum of these subspaces of CHpMq is a direct sum and the restric-
tion of the Poincaré pairing to this direct sum is non-degenerate. Since IH˝pMq is defined to be the
orthogonal complement of the above direct sum, we have an orthogonal decomposition

CHpMq “ IH˝pMq ‘
à

F

ψFMJpMF q b CHpMF q

and the restriction of the Poincaré pairing to IH˝pMq is also non-degenerate. Thus, PD˝pMq and
CD˝pMq hold. The statements PDpMq and CDpMq follow from the same arguments. �

Proposition 8.5. If CD˝pMq holds, then xx∅y X IH˝pMq “ x∅ ¨ IH˝pMq.

Proof. By CD˝pMq, we have

xx∅y X IH˝pMq “ x∅ CHpMq X IH˝pMq

“

´

x∅ IH˝pMq ‘
ÿ

∅ăFăE
x∅ψ

F
MJpMF q b CHpMF q

¯

X IH˝pMq “ x∅ ¨ IH˝pMq. �

Corollary 8.6. If CD˝pMq holds, then ϕ∅
M IH˝pMq “ IHpMq.

Proof. Let F be a nonempty proper flat of M. By the second commutative square of Lemma 2.18 (1),

ψ∅
Mψ

F
MJpMF q b CHpMF q “ ψFM

´

JpMF q b ψ
∅
MFCHpMF q

¯

Ď ψFMJpMF q b CHpMF q.

Therefore, IH˝pMq is orthogonal to ψ∅
Mψ

F
MJpMF q b CHpMF q with respect to the Poincaré pairing

on CHpMq. By Proposition 2.5, ϕ∅
M IH˝pMq is orthogonal to ψFMJpMF q b CHpMF q with respect to

the Poincaré pairing on CHpMq. Thus ϕ∅
M IH˝pMq Ď IHpMq.

On the other hand, by the first commutative square of Lemma 2.18 (1), we have

ϕ∅
Mψ

F
MJpMF q b CHpMF q “ ψFM

´

JpMF q b ϕ
∅
MF CHpMF q

¯

“ ψFMJpMF q b CHpMF q.

Hence, IHpMq is orthogonal to ϕ∅
Mψ

F
MJpMF q b CHpMF q with respect to the Poincaré pairing on

CHpMq, or equivalentlyψ∅
MIHpMq is orthogonal toψFMJpMF qbCHpMF qwith respect to the Poincaré

pairing on CHpMq. Thus ψ∅
MIHpMq Ď IH˝pMq.

By Proposition 2.7, we have ψ∅
MIHpMq Ď xx∅y. Then by Proposition 8.5, we have

ψ∅
MIHpMq Ď IH˝pMq X xx∅y “ x∅ ¨ IH˝pMq “ ψ∅

Mϕ
∅
M IH˝pMq.

By the injectivity of ψ∅
M, it follows that IHpMq Ď ϕ∅

M IH˝pMq. �

Corollary 8.7. If CD˝pMq holds, then xx∅y X IH˝pMq “ ψ∅
MIHpMq.

Proof. By Corollary 8.6 and Proposition 2.7, we have

ψ∅
MIHpMq “ ψ∅

Mϕ
∅
M IH˝pMq “ x∅ ¨ IH˝pMq.

The statement then follows from Proposition 8.5. �
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Proposition 8.8. If CD˝pMq holds, then for any k ď d{2, then CDkpMq implies NSkpMq.

Proof. Suppose that η P IHkpMq and yiη “ 0 for all i P E. By Lemma 5.2, η is a multiple of x∅.
Thus, Corollary 8.7 implies that

η P ψ∅
MIHk´1pMq “ ψ∅

MJk´1pMq.

However, CDkpMq implies that IHkpMq X ψ∅
MJk´1pMq “ 0. Therefore, we have η “ 0. �

8.3. The Hancock condition. Let N “
À

kě0 Nk be a finite-dimensional graded Q-vector space
equipped with a symmetric bilinear form. Let

PNptq–
ÿ

kě0

tk dim Nk

be the Poincaré polynomial of N. We say that N is Hancock if the signature of the bilinear form (the
number of positive eigenvalues minus the number of negative eigenvalues) is equal to PNp´1q.

Remark 8.9. If the symmetric bilinear form on N satisfies Poincaré duality of degree d, then its
signature is equal to the signature of its restriction to the degree d{2 piece. In particular, if d is odd,
then the signature is necessarily zero, as is PNp´1q. Thus when d is odd, the Hancock condition
follows automatically from Poincaré duality.

The motivation for the Hancock condition is the following proposition.

Proposition 8.10. Suppose that L: N Ñ N is a linear operator of degree 1 with respect to which
N satisfies Poincaré duality and the hard Lefschetz theorem of degree d. Suppose that d is even
and that N satisfies the Hodge–Riemann relations of degree d in all but the middle degree. Then
N satisfies the Hodge–Riemann relations in middle degree if and only if N is Hancock.

Proof. The hard Lefschetz theorem implies that

Nd{2 “

d{2
à

k“0

Lpd{2q´k kerpLd´2k`1q.

For all k ď d{2, the Hodge–Riemann relations in degree k are equivalent to the statement that the
signature of the restriction of the bilinear form to Lpd{2q´k kerpLd´2k`1q is equal to p´1qkpdim Nk ´

dim Nk´1q. If we assume the Hodge–Riemann relations in all but one degree, this means that the
Hodge–Riemann relations in the missing degree are equivalent to the statement that the signature
of the bilinear for is equal to

d{2
ÿ

k“0

p´1qkpdim Nk ´ dim Nk´1q.
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By Poincaré duality and the fact that d is even,

´p´1qk dim Nk´1 “ dim Nd´k`1 “ p´1qd´k`1 dim Nd´k`1,

thus the expected signature is

d{2
ÿ

k“0

´

p´1qk dim Nk ` p´1qd´k`1 dim Nd´k`1
¯

“ PNp´1q.

This completes the proof. �

Lemma 8.11. If N and N1 are both Hancock, then so are N‘N1 and NbN1.

Proof. This follows from the fact that signature and Poincaré polynomial are both multiplicative
with respect to tensor product and additive with respect to direct sum. �

Lemma 8.12. Suppose that N is Hancock and N “ N0‘N1‘¨ ¨ ¨‘Nl is an orthogonal decomposition.
If N1, . . . ,Nl are all Hancock, then so is N0.

Proof. This follows from the fact that the signature and the Poincaré polynomial are both additive
with respect to the orthogonal decomposition. �

Lemma 8.13. A graded bilinear form that is adapted to r is Hancock if and only if its r-reduction
is Hancock.

Proof. This follows from the fact that the original matrix and its block diagonal part have the same
multiset of eigenvalues. �

Corollary 8.14. Let F be a nonempty proper flat of M such that PDpMF q, HLpMF q, and HRpMF q

hold. The graded subspace ψFMJpMF q b CHpMF q is Hancock with respect to the Poincaré pairing
on CHpMq, and the graded subspace ψFMJpMF qbCHpMF q is Hancock with respect to the Poincaré
pairing on CHpMq.

Proof. We prove the first statement; the proof of the second is the same. By Proposition 8.3 and
Lemma 8.13, this is equivalent to the statement that the graded vector space JpMF qr´1sbCHpMF q

is Hancock with respect to the pairing x¨, ¨yJpMF qr´1sbCHpMF q. Let r “ crkF . By Lemma 8.11, it is
sufficient to prove that CHpMF q and JpMF qr´1s are both Hancock. The first assertion follows from
Theorem 2.19 and Proposition 8.10. The second assertion follows from Lemma 8.2 and Proposition
8.10. �

Proposition 8.15. Assume that E is nonempty and that PDpMF q, HLpMF q, and HRpMF q hold for
all nonempty proper flats of M. Then

CD˝pMq, PD˝pMq, HL˝pMq, and HR
ă d

2
˝ pMq ùñ HR˝pMq.
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Proof. Proposition 8.10 tells us that we need to show that IH˝pMq is Hancock. By Corollary 8.14,
ψFMJpMF q b CHpMF q is Hancock for all nonempty proper flats F of M. Theorem 2.19 and Propo-
sition 8.10 tell us that CHpMq is Hancock, thus the subspace IH˝pMq is Hancock by CD˝pMq and
Lemma 8.12. �

Proposition 8.16. Suppose that E is nonempty and the following statements hold:

CDpMq, PDpMq, HLpMq, HRă
d
2 pMq, PD˝pMq, HL˝pMq, HR˝pMq, PDpMq, HLpMq, and HRpMq.

Then HRpMq also holds.

Proof. By Proposition 8.10, it suffices to show that IHpMq is Hancock. By CDpMq, we have

IH˝pMq “ IHpMq ‘ ψ∅
MJpMq.

Since PD˝pMq, HL˝pMq, and HR˝pMq hold, Proposition 8.10 implies that IH˝pMq is Hancock. By
PDpMq, HLpMq, and HRpMq, Lemma 8.2 and Proposition 8.10 combine to tell us that ψ∅

MJpMq is
Hancock. Finally, IHpMq is Hancock by Lemma 8.12. �

9. DELETION INDUCTION FOR IHpMq

Let M be a matroid of rank d ą 0 on the ground set E. The purpose of this section is to show
that, if CDă

d
2 pMq holds, and all of the statements of Theorem 3.16 hold for matroids whose ground

sets are proper subsets of E, then HLipMq and HR
ă d

2
i pMq also hold.

Throughout this section, we assume the following hypotheses:

(1) the element i P E is not a coloop and it does not have a parallel element;

(2) the statement CDă
d
2 pMq holds;

(3) Theorem 3.16 holds for any matroid whose ground set is a proper subset of E.

In particular, PD˝pMq and CD˝pMq hold by Corollary 8.4, and CDą
d
2 pMq holds by Remark 3.11.

Moreover, given PD˝pMq and CD˝pMq, the statement CDă
d
2 pMq implies PDă

d
2 pMq. Our goal is to

show that these hypotheses imply HLipMq and HR
ă d

2
i pMq.

9.1. The deletion map and the semi-small decomposition. Fixing an element i of E, there is a
graded algebra homomorphism

θM
i : CHpMziq Ñ CHpMq, xF ÞÑ xF ` xFYi,

where a variable in the target is set to zero if its label is not a flat of M. Let CHpiq be the image of
the homomorphism θM

i , and let

Si –
 

F | F is a proper subset of Ezi such that F P LpMq and F Y i P LpMq
(

.
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We will use the following result from [BHM`20].

Theorem 9.1. If i is not a coloop of M, there is a direct sum decomposition of CHpMq into inde-
composable graded CHpMziq-modules

CHpMq “ CHpiq ‘
à

FPSi

xFYiCHpiq. (2)

If i is a coloop of M, there is a direct sum decomposition of CHpMq into indecomposable graded
CHpMziq-modules

CHpMq “ CHpiq ‘ xEziCHpiq ‘
à

FPSi

xFYiCHpiq. (3)

In the first case, all pairs of distinct summands are orthogonal for the Poincaré pairing of CHpMq,
while in the second case all pairs of summands except the first two are orthogonal. Moreover, the
summands admit isomorphisms as CHpMziq-modules

CHpiq – CHpMziq and xFYi CHpiq – CHpMFYiq b CHpMF qr´1s.

9.2. The hard Lefschetz theorem. Suppose that i P E is not a coloop and let δ : LpMq Ñ LpMziq be
the map that takes F to F zi for all flats F . Let θM

i : CHpMziq Ñ CHpMq be the ring homomorphism
defined in Section 9.1. It follows from the definition that θM

i pyjq “ yj for any j P Ezi. More
generally, for any flat G P LpMq, we have θM

i pyGq “ yḠ, where Ḡ is the closure of G in M.

Recall that, in Section 5.1, we defined an ideal ΥΣ Ď HpMq for any order filter Σ Ď LpMq. In
this section we will write ΥM

Σ for Σ Ď LpMq and ΥM
Σ zi for Σ Ď LpMziq to make it clear which

matroid we are working with at any given time. The fact that θM
i pyGq “ yḠ immediately implies

the following lemma.

Lemma 9.2. For any order filter Σ in LpMziq, we have

HpMq ¨ θM
i pΥ

Mzi
Σ q “ ΥM

δ´1pΣq.

We do not assume CDpMq in middle degree, so we do not yet know that IHpMq is a direct
summand of CHpMq. However, we can produce a direct summand artificially in the following
manner. Let

ĂIH
k
pMq–

$

&

%

IHkpMq if k ‰ d{2

IHk
˝pMq if k “ d{2.

Equivalently, we can define

rJ
k
pMq–

$

&

%

JkpMq if k ‰ d{2

0 if k “ d{2

and then define ĂIHpMq to be the orthogonal complement toψ∅
M
rJpMq inside of IH˝pMq. In particular,

when d is odd, ĂIHpMq “ IHpMq and rJpMq “ JpMq.
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Lemma 9.3. The subspace ĂIHpMq Ď IH˝pMq is an HpMq-submodule. Moreover, ĂIHpMq satisfies
Poincaré duality and it is a direct summand of CHpMq.

Proof. The maximal ideal Υą∅ of HpMq annihilates x∅, and hence the image of ψ∅
M. Therefore,

ψ∅
M
rJpMq is an HpMq-submodule, and thus the same is true for its orthogonal complement. The

statement CDă
d
2 pMq implies that ψ∅

M
rJpMq satisfies Poincaré duality, and the statement CD˝pMq

implies that IH˝pMq satisfies Poincaré duality. Therefore, ĂIHpMq satisfies Poincaré duality and we
have an orthogonal decomposition

IH˝pMq “ ĂIHpMq ‘ ψ∅
M
rJpMq.

By CD˝pMq, IH˝pMq is a direct summand of CHpMq, and hence the lemma follows. �

Lemma 9.4. The inclusions IHpMq Ď ĂIHpMq Ď IH˝pMq induce isomorphisms

IHpMqF – ĂIHpMqF – IH˝pMqF

for all nonempty flats F . If d is even, then the induced map IHkpMq∅ Ñ ĂIH
k
pMq∅ is an isomor-

phism when k ‰ d{2, pd{2q ` 1, and is surjective when k “ pd{2q ` 1.

Proof. If F is nonempty, Lemma 6.2 implies that yF IHpMq “ yF IH˝pMq, from which the first

statement follows. The second statement follows from the fact that IHkpMq “ ĂIH
k
pMq for k ‰ d{2

and IH
d
2 pMq Ď ĂIH

d
2
pMq. �

An HpMq-module N can also be considered as an HpMziq-module. We will use notations NFPLpMq

and NFPLpMziq to emphasize the module structure under which the stalk is taken.

Lemma 9.5. Suppose that F P LpMziq is a proper flat. The stalk ĂIHpMqFPLpMziq vanishes in degrees
strictly greater than pcrkF q{2.

Proof. For any order filter Σ Ď LpMziq, Lemma 9.2 says that ΥM
δ´1Σ “ HpMq ¨ θM

i pΥ
Mzi
Σ q. Thus, we

have

ĂIHpMqFPLpMziq “
θM
i

`

Υ
Mzi
ěF

˘

ĂIHpMqrrkF s

θM
i

`

Υ
Mzi
ąF

˘

ĂIHpMqrrkF s
“

ΥM
δ´1ΣěF

ĂIHpMqrrkF s

ΥM
δ´1ΣąF

ĂIHpMqrrkF s
.

If F R Si (defined in Section 9.1), then δ´1pGq consists of a single element F̄ , the closure of F in M.
In this case, we have

δ´1ΣěF “ ΣěF̄ and δ´1ΣąF “ ΣąF̄ .

Therefore, ĂIHpMqFPLpMziq – ĂIHpMqF̄PLpMq. By our assumption that i does not have any parallel
element, it follows that ∅ R Si, and hence F ‰ ∅. Thus, by Proposition 6.3, Lemma 9.4, and
the fact that rkF “ rk F̄ , the stalk ĂIHpMqFPLpMziq vanishes in degrees greater than or equal to
pcrkF q{2.
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If F P Si, then both F and F Y i are flats of M. In this case, we have

δ´1Σ
Mzi
ěF “ ΣM

ěF and δ´1Σ
Mzi
ąF “ ΣM

ąF ztF Y iu.

Thus, we get an exact sequence of graded vector spaces

0 Ñ ĂIHpMqFYiPLpMqr´1s Ñ ĂIHpMqFPLpMziq Ñ ĂIHpMqFPLpMq Ñ 0. (4)

If F is nonempty, then by Proposition 6.3 and Lemma 9.4, the stalk ĂIHpMqFPLpMq vanishes in de-
grees greater than or equal to pcrkF q{2 and ĂIHpMqFYiPLpMqr´1s vanishes in degrees greater than or
equal to 1 ` pcrkF Y iq{2, or equivalently in degrees greater than pcrkF q{2. Thus, ĂIHpMqFPLpMziq
vanishes in degrees greater than pcrkF q{2. If F “ ∅, then by Proposition 6.3, Remark 6.4, and
Lemma 9.4, the stalks ĂIHpMq∅PLpMq and ĂIHpMqiPLpMqr´1s both vanish in degrees greater than d{2,
so again ĂIHpMqFPLpMziq vanishes in degrees greater than d{2. �

Proposition 9.6. The graded CHpMq-module ĂIHpMq is isomorphic as an HpMziq-module to a direct
sum of modules of the form IHppMziqF qr´pcrkF q{2s for various flats F P LpMziq of even corank.

Proof. By Proposition 6.6, the HpMziq-modules HppMziqF q are indecomposable for all F P LpMziq.
Thus, the decomposition (2) and the isomorphism

xFYi CHpiq – CHpMFYiq b CHpMF qr´1s

in Theorem 9.1 imply that as a graded HpMziq-module CHpMq is isomorphic to a direct sum of
modules of the form IHppMziqF qrks for various flats F P LpMziq and integers k. By Lemma 9.3,
ĂIHpMq is also isomorphic to a sum of graded HpMziq-modules of this form. It suffices to show that
if IHppMziqF qrks appears as a summand of ĂIHpMq, then k “ ´pcrkF q{2. Since only one copy of
IHppMziqq appears in CHpMqwithout shift, the assertion holds for F “ Ezi.

Suppose that IHppMziqF qrks is a summand of ĂIHpMq with F P LpMziq a proper flat. From
Lemma 5.6, we have IHppMziqF qrksF – Qrks. Thus, Lemma 9.5 implies that ´k ď pcrkF q{2. Since
both IHppMziqF q and ĂIHpMq satisfy Poincaré duality, we have isomophisms of HpMziq-modules

IHppMziqF q˚ – IHppMziqF qrrkF s and ĂIHpMq˚ – ĂIHpMqrds.

Therefore,
ĂIHpMq – ĂIHpMq˚r´ds

must have a summand isomorphic to

IH
`

pMziqF
˘

rks˚r´ds – IH
`

pMziqF
˘

r´k ´ d` rkF s “ IH
`

pMziqF
˘

r´k ´ crkF s.

By the above arguments, we have k ` crkF ď pcrkF q{2, or equivalently ´k ě pcrkF q{2. The
above two inequalities between ´k and pcrkF q{2 imply that ´k “ pcrkF q{2. �

Corollary 9.7. The statement HLipMq holds.



SINGULAR HODGE THEORY FOR COMBINATORIAL GEOMETRIES 69

Proof. Notice that the hard Lefschetz theorem for IHpMq as an HpMziq-module is equivalent to the
hard Lefschetz theorem for ĂIHpMq as an HpMziq-module. By Proposition 9.6, the theorem follows
from HL for matroids whose ground sets are subsets of Ezi, and hence proper subsets of E. �

9.3. The Hodge–Riemann relations away from middle degree. Let F be a nonempty flat of Mzi

of even corank and suppose we have an inclusion

f : IHppMziqF qr´pcrkF q{2s ãÑ ĂIHpMq

as a direct summand. We have two pairings on IHppMziqF q that are a priori different: the one
induced by the inclusion of IHppMziqF q into CHppMziqF q, and the one induced by the inclusion f .

Lemma 9.8. The above two pairings are related by a constant factor c P Q with p´1qpcrkF q{2c ą 0.

Proof. Both pairings are compatible with the Poincaré pairing in the sense that xηξ, σy “ xξ, ησy

for any η P HpMziq and ξ, σ P IHppMziqF q. Thus, both are given by isomorphisms

IHppMziqF q˚ – IHppMziqF qrds.

of graded HpMziq-modules. Proposition 6.6 (1) implies that IHppMziqF q has only scalar endomor-
phisms, and hence any two such isomorphisms must be related by a nonzero scalar factor c P Q.

To compute the sign of c, we pair the class 1 P IHppMziqF qwith the class yF P IHppMziqF q. Inside
of CHppMziqF q, they pair to 1. By Proposition 2.13 and Proposition 2.15, the pairing of 1 and yF

inside of ĂIHpMq is equal to the Poincaré pairing of ϕM
F̄
˝ fp1qwith itself inside of ϕM

F̄
ĂIH
pcrkF q{2

pMq,
which is equal to IHpcrkF q{2pMF̄ q by Lemma 6.2. Here, we note that F̄ is the closure of F in M,
and θM

i pyF q “ yF̄ . Since ϕM
F̄
˝ fp1q is annihilated by yj for all j P EzF̄ , it is a primitive class

in IHpcrkF q{2pMF̄ q. Therefore, the sign of its inner product with itself is equal to p´1qpcrkF q{2 by
HRpMF̄ q. �

Corollary 9.9. The statement HR
ă d

2
i pMq holds.

Proof. Since the statement does not involve the middle degree, we can replace IHpMqwith ĂIHpMq.
By Proposition 9.6, it suffices to prove that each summand IHppMziqF qr´pcrkF q{2s of ĂIHpMq sat-
isfies the Hodge–Riemann relations. Again, since the statement does not involve the middle
degree, we can assume that F is nonempty. Then the statement follows from Lemma 9.8 and
HRppMziqF q. �

10. DELETION INDUCTION FOR IHipMq

Let M be a matroid on the ground set E. The purpose of this section is to show that, if we know
everything for matroids with strictly smaller ground sets, then HLipMq and HRipMq hold.

Throughout this section, we assume the following:
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(1) the element i P E is not a coloop and it does not have any parallel element;

(2) Theorem 3.16 holds for any matroid whose ground set is a proper subset of E.

The basic argument is similar to the one in the previous section. We show in Corollary 10.11
that IHipMq is isomorphic to a direct sum of modules of the form IHppMziqF qr´pcrkF q{2s. Since
the matroids pMziqF have smaller ground sets than M, we know HLppMziqF q and HRppMziqF q

by induction, and we use this to deduce HLipMq and HRipMq. However, the Qrβ, xtius-module
structure on IHipMq is not rich enough to define the decomposition directly, so instead we work
with a decomposition of IHipMq as an HpMziq-module, and then use it to produce the desired
decomposition of IHipMq.

We have an identification IHipMq “ IHipMq∅, where the stalk is taken at the empty flat in LpMq.
However, when IHipMq is considered as an HpMziq-module, we can only take the stalk of IHipMq

at the empty flat of the matroid Mzi. This stalk will be too large for what we want, because it
includes a contribution from the stalk IHipMqtiuPLpMq, by the analog of the exact sequence (4). To
get around this problem, we find a direct summand inside IHipMq that gives the correct stalk at
∅ P LpMziq. We find this summand by intersecting IHipMq with a direct summand of CHpMq

obtained from the decomposition defined in [BHM`20].

Remark 10.1. Let us explain the geometry behind this decomposition when M is realizable. Fol-
lowing the notation of Section 1.3, we have the Schubert variety Y corresponding to M and its
blow-up Y˝ at the point stratum corresponding to the flat ∅ of M. Recall from Remark 4.1 that
the exceptional divisor Y Ď Y˝ has intersection cohomology IHpMq. Let Yi be the blow-up of Y˝
along the proper transform of U tiu, the closure of the stratum indexed by tiu, and let Y i Ď Yi be
the inverse image of Y . It is the blow-up of Y along Y X U tiu, and its intersection cohomology is
IHipMq.

As explained in Remark 4.3, the Schubert variety corresponding to Mzi is the image Y 1 of Y
under the projection pP1qE Ñ pP1qEzi. Let Y 1˝ be the blow-up of Y 1 at the point stratum. The
projection Y Ñ Y 1 does not lift to a map Y˝ Ñ Y 1˝ , but it does lift to a map Yi Ñ Y 1˝ . The
preimage of the exceptional divisor Y 1 of Y 1˝ under this map has two components: Y i and the
exceptional divisor of Yi Ñ Y˝. Taking the stalk of the HpMziq-module IHipMq at ∅ P LpMziq

gives the cohomology of the restriction of the IC sheaf of Yi to the union of both components. The
component Y i gives IHipMq, but there is also a contribution from the other component. By finding
the correct summand of IHipMq, we are able to get only the part of this stalk that we want.

10.1. A two-summand decomposition of CHpMq. Let Si be the collection of subsets ofEzi defined
in Section 9.1. Let

R – CHpiq‘
à

FPSizt∅u
xFYi CHpiq and P – xi CHpiq Ď CHpMq.
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By the decomposition (2), we have an orthogonal decomposition of CHpMziq-modules

CHpMq “ R‘ P.

Lemma 10.2. Let F P LpMq be a flat different from both ∅ and tiu. Then yFR Ď R and yFP “ 0.

Proof. We have yFxi “ 0 and hence yFP “ 0. Since yFP “ 0, R is orthogonal to yFP , and
equivalently, yFR is orthogonal to P . Since R is the orthogonal complement of P , the inclusion
yFR Ď R follows. �

Consider the ideals
Υ

Mzi
ą∅ Ď HpMziq and ΥM

ą∅ Ď HpMq.

Recall that by Proposition 2.7 and Lemma 5.2, we have a natural isomorphism of CHpMq-modules

CHpMq –
CHpMq

ΥM
ą∅ ¨ CHpMq

.

Proposition 10.3. The inclusion of R into CHpMq induces an isomorphism of CHpMziq-modules

R

Υ
Mzi
ą∅ ¨R

–
CHpMq

ΥM
ą∅ ¨ CHpMq

.

Proof. To prove surjectivity, it suffices to show that

R`ΥM
ą∅ ¨ CHpMq “ CHpMq,

or equivalently that P Ď R ` ΥM
ą∅ ¨ CHpMq. As a module over CHpMziq, P is generated by xi, so

it is enough to show that xi P R`ΥM
ą∅ ¨ CHpMq. To see this, we observe that in CHpMq,

yi “
ÿ

iRF

xF “
ÿ

FPSi

´

θM
i pxF q ´ xFYi

¯

`
ÿ

FPLpMziq,FYiRLpMq

θM
i pxF q. (5)

We have yi P ΥM
ą∅ CHpMq and all of the summands on the right-hand side of this expression are

in R except for xi, therefore xi P R`ΥM
ą∅ CHpMq. This completes the proof of surjectivity.

We will prove injectivity by showing that the source and target have the same dimension. For
this purpose, we factor the map as follows:

R

Υ
Mzi
ą∅ ¨R

Ñ
CHpMq

Υ
Mzi
ą∅ ¨ CHpMq

Ñ
CHpMq

ΥM
ą∅ ¨ CHpMq

.

Since R is a direct summand of CHpMq as CHpMziq-modules, it follows that

Υ
Mzi
ą∅ ¨R “ RXΥ

Mzi
ą∅ ¨ CHpMq.

Thus, the first map is injective. We have shown that the composition (and therefore the second
map) is surjective. It suffices to show that the cokernel of the first map has the same dimension as
the kernel of the second map.
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By Lemma 10.2, we have

Υ
Mzi
ą∅ ¨ CHpMq “ Υ

Mzi
ą∅ ¨R`Υ

Mzi
ą∅ ¨ P “ Υ

Mzi
ą∅ ¨R.

Therefore, the cokernel of the first map is isomorphic to P “ xi CHpMqpiq – CHpMiqr´1s.

On the other hand, the kernel of the second map is

ΥM
ą∅ ¨ CHpMq

Υ
Mzi
ą∅ ¨ CHpMq

“
ΥM
ą∅ ¨ CHpMq

ΥM
Σą∅ztiu

¨ CHpMq
.

By Proposition 5.8 (1), the above quotient is isomorphic to

ΥM
ěi ¨ CHpMq

ΥM
ąi ¨ CHpMq

,

which by Lemma 5.6 is isomorphic to pyi CHpMqq∅. By Proposition 2.7 and Lemma 5.2, we have

pyi CHpMqq∅ – CHpMiqr´1s∅ – CHpMiqr´1s.

This completes the proof of injectivity. �

10.2. The pR,P q-decomposable modules. We say that a graded subspace V Ď CHpMq is pR,P q-
decomposable if V “ pV XRq ‘ pV X P q.

Lemma 10.4. If V is pR,P q-decomposable, so is the orthogonal complement V K with respect to
the Poincaré pairing of CHpMq.

Proof. Since V is pR,P q-decomposable, V K X R is equal to the orthogonal complement of V X R

inside of R and V K XP is equal to the orthogonal complement of V XP inside of P . Since both R
and P satisfy Poincaré duality, we have

dimpV K XRq “ dimR´ dimpV XRq and dimpV K X P q “ dimP ´ dimpV X P q,

and hence

dimpV K XRq ` dimpV K X P q “ dimR` dimP ´ dimpV XRq ´ dimpV X P q

“ dim CHpMq ´ dimV

“ dimV K.

Since pV K X Rq ‘ pV K X P q Ď V K, the above equality implies that the inclusion is indeed an
equality, and equivalently, V K is pR,P q-decomposable. �

Lemma 10.5. Suppose that V Ď CHpMq is a summand of CHpMq as graded HpMq-modules and
suppose that the restriction of the Poincaré pairing to V is non-degenerate. If V Ď CHpMq is
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pR,P q-decomposable, then the inclusion of V into CHpMq induces a graded vector space isomor-
phism

V XR

Υ
Mzi
ą∅ ¨ pV XRq

–
V

ΥM
ą∅ ¨ V

.

Proof. By the non-degeneracy assumption, we have a decomposition CHpMq “ V ‘ V K. By
Lemma 10.4, V K is also pR,P q-decomposable. Thus, we have R “ pV X Rq ‘ pV K X Rq, and
the isomorphism in Proposition 10.3 decomposes as a direct sum of isomorphisms

V XR

V XΥ
Mzi
ą∅ ¨R

–
V

V XΥM
ą∅ ¨ CHpMq

and
V K XR

V K XΥ
Mzi
ą∅ ¨R

–
V K

V K XΥM
ą∅ ¨ CHpMq

.

It therefore suffices to show that V XΥ
Mzi
ą∅R “ Υ

Mzi
ą∅ pV XRq and V XΥM

ą∅ CHpMq “ ΥM
ą∅V . They

follow from decompositions R “ pV XRq ‘ pV K XRq and CHpMq “ V ‘ V K respectively. �

The main result of this section is the following.

Proposition 10.6. The subspace IHipMq Ď CHpMq is pR,P q-decomposable.

Proof. Clearly, a direct sum of pR,P q-decomposable modules is pR,P q-decomposable. By Lemma
10.4, it suffices to prove that every summand of IHipMq

K is pR,P q-decomposable. Thus, it suffices
to show ψFMpJpMF q bCHpMF qq is pR,P q-decomposable for all nonempty proper flats F ‰ tiu. We
divide the proof into three cases.
Case 1: i R F . In this case, xixF “ 0, so

ψFMpJpMF q b CHpMF qq Ď xF CHpMq Ď PK “ R.

Case 2: i P F and F zi R LpMq. In this case, i is not a coloop of MF . By the decomposition (2), we
have

CHpMF q “ CHpMF qpiq ‘
à

GPSipMF q

xGYi CHpMF qpiq.

Let

Q– ψFM

´

JpMF q b CHpMF qpiq

¯

.

Then,

ψFM
`

JpMF q b CHpMF q
˘

“ Q‘
à

GPSipMF q

xGYiQ. (6)

We will prove that ψFMpJpMF qbCHpMF qq is pR,P q-decomposable, by proving every summand on
the right-hand side of Equation (6) is pR,P q-decomposable.

Since F zi R LpMq, we have θM
i pxF ziq “ xF . Notice that

JpMF q b CHpMF qpiq Ď CHpMF q b CHpMF qpiq “ ϕFM CHpiq .
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Therefore,

Q “ ψFM

´

JpMF q b CHpMF qpiq

¯

Ď ψFM

´

ϕFM CHpiq

¯

“ xF CHpiq Ď CHpiq Ď R.

For any G P SipMF q Ď SipMq, we have

xGYiQ Ď xGYi CHpiq,

which is contained in R if G is nonempty and in P if G is empty. Therefore, each summand of the
right-hand side of Equation (6) is pR,P q-decomposable.
Case 3: i P F and F zi P LpMq. In this case, i is a coloop of MF . By the decomposition (3), we have

CHpMF q “ CHpMF qpiq ‘ xF zi CHpMF qpiq ‘
à

GPSipMF q

xGYi CHpMF qpiq,

and hence
ψFM

`

JpMF q b CHpMF q
˘

“ Q‘ xF ziQ‘
à

GPSipMF q

xGYiQ. (7)

We still have Q Ď xF CHpiq Ď R (even though we no longer have xF CHpiq Ď CHpiq). For any
G P SipM

F q Ď SipMq, we have

xGYixF “ xGYipxF zi ` xF q “ xGYiθ
M
i pxF ziq P xGYi CHpiq,

thus
xGYiQ Ď xGYixF CHpiq Ď xGYi CHpiq .

If G “ ∅, then xGYi CHpiq is contained in P , and otherwise it is contained in R. Since tiu and F zi

are incomparable, xF ziQ is orthogonal to P , and hence contained in R. We have proved that every
summand on the right-hand side of (7) is pR,P q-decomposable. Thus, ψFMpJpMF q b CHpMF qq is
also pR,P q-decomposable. �

Combining Lemma 10.5 and Proposition 10.6, we obtain the following corollary.

Corollary 10.7. The inclusion of IHipMq into CHpMq induces a graded vector space isomorphism

IHipMq XR

Υ
Mzi
ą∅ ¨ pIHipMq XRq

–
IHipMq

ΥM
ą∅ ¨ IHipMq

– IHipMq.

10.3. The hard Lefschetz theorem.

Lemma 10.8. Suppose that F P LpMq is different from ∅ and tiu. Then, ϕM
F IHipMq “ IHpMF q.

Proof. By Lemma 6.2 (2), we have ϕM
F IH˝pMq “ IHpMF q. By CD˝pMq, we have

IHipMq “ IH˝pMq ‘ ψ
i
M

`

JpM{iq b CHpMiq
˘

Ď IH˝pMq ‘ xi CHpMq.

Since ϕM
F is a ring homomorphism and ϕM

F pxiq “ 0, it follows that

ϕM
F IHipMq “ ϕM

F IH˝pMq “ IHpMF q. �



SINGULAR HODGE THEORY FOR COMBINATORIAL GEOMETRIES 75

We will now state and prove the analogues of Lemma 9.5 and Proposition 9.6.

Lemma 10.9. Suppose that F P LpMziq is a nonempty proper flat. The stalk pIHipMq XRqFPLpMziq
vanishes in degrees greater than pcrkF q{2.

Proof. First we note that IHipMq XR and IHipMq X P are not HpMq-modules, because they are not
closed under multiplication by yi.11 However, by Lemma 10.2, P is closed under multiplication
by yG for G ‰ tiu. As the orthogonal complement, R is also closed under multiplication by yG for
G ‰ tiu. Thus, the stalks pIHipMq XRqGPLpMq is well-defined for G ‰ ∅, tiu.

We now follow the argument in the proof of Lemma 9.5. If F R Si, then

pIHipMq XRqFPLpMziq – pIHipMq XRqF̄PLpMq,

where F̄ is the closure of F in LpMq. By Lemma 5.6 and Lemma 10.8, we have

IHipMqF̄PLpMq – pyF̄ IHipMqq∅ –
`

ϕM
F̄ IHipMq

˘

∅ “ IHpMF̄ q∅.

By Proposition 6.3 (1) for the matroid MF̄ , this stalk vanishes in degrees greater than or equal to
pcrkF q{2. Therefore, the stalk pIHipMq XRqFPLpMziq also vanishes in degrees greater than or equal
to pcrkF q{2.

If F P Si, then

δ´1Σ
Mzi
ěF “ ΣM

ěF and δ´1Σ
Mzi
ąF “ ΣM

ąF ztF Y iu.

Thus, we get a short exact sequence of graded vector spaces

0 Ñ pIHipMq XRqFYiPLpMqr´1s Ñ pIHipMq XRqFPLpMziq Ñ pIHipMq XRqFPLpMq Ñ 0.

By the same reasoning as above, we have pIHipMq XRqFPLpMq vanishes in degrees greater than or
equal to pcrkF q{2 and pIHipMq XRqFYiPLpMqr´1s vanishes in degrees greater than or equal to 1`

pcrkFYiq{2. Since crkFYi “ crkF´1, the short exact sequence implies that pIHipMqXRqFPLpMziq
vanishes in degrees greater than pcrkF q{2. �

Since xFYi CHpiq – CHpMFYiqbCHpMF qr´1s as CHpiq-modules, and hence as H˝pMziq-modules,
R is isomorphic to the direct sum of CHpMziq and shifted copies of CHpMF q for various F P Si.
Furthermore, iterating the decomposition CD˝ to lower intervals of M, one sees that as H˝pMziq-
modules, CHpMziq and each CHpMF q are isomorphic to sums of shifted copies of IH˝ppMziq

Gq for
various nonempty flats G P LpMziq. Thus, R is isomorphic to a direct sum of shifted copies of
IH˝ppMziq

Gq for various nonempty flats G P LpMziq. Since IHipMq X R is a direct summand of
R as an H˝pMziq-module, by the indecomposability of IH˝ppMziq

Gq (Proposition 6.6 (2)) and the

11For instance, one can easily check that yi R R using Equation (5). Since 1 P IHipMqXR, it follows that IHipMqXR

is not closed under multiplication by yi.
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Krull–Schmidt theorem, we know that IHipMq X R is also isomorphic to a direct sum of shifted
copies of IH˝ppMziq

Gq for various nonempty flats G P LpMziq.

Proposition 10.10. The graded H˝pMziq-module IHipMqXR is isomorphic to a direct sum of mod-
ules of the form IH˝ppMziq

F qr´pcrkF q{2s for various nonempty flats F P LpMziq.

Proof. The proof is very similar to that of Proposition 9.6. As we have argued before the propo-
sition, each indecomposable summand of IHipMq X R is isomorphic to IH˝ppMziq

F qrks for some
nonempty flat F P LpMziq. What we need to show is that k “ ´pcrkF q{2. Since only one copy
of IH˝pMziq appears in IHipMq X R, and it appears without shift, the assertion holds if F “ Ezi.
Now, we assume that F is a proper flat of Mzi.

Suppose that IH˝ppMziq
F qrks is a summand of IHipMq X R with F P LpMziq a nonempty

proper flat. By Lemma 5.6, we have IHppMziqF qrksF – Qrks. Thus Lemma 10.9 implies that
´k ď pcrkF q{2.

By Corollary 8.4 and its proof, we know that IHipMq satisfies Poincaré duality. Since CHpMq “

R ‘ Q is an orthogonal decomposition, and since IHipMq is pR,P q-decomposable, the Poincaré
duality of IHipMq implies the Poincaré duality of IHipMq XR. Thus, we have

`

IHipMq XR
˘˚
–

`

IHipMq XR
˘

rds.

as H˝pMziq-modules. By PD˝ppMziq
F q, we also have

IH˝
`

pMziqF
˘˚
– IH˝

`

pMziqF
˘

rrkF s

as H˝pMziq-modules. These two isomorphisms imply that

IHipMq XR – pIHipMq XRq
˚r´ds

must have a summand isomorphic to

IH˝
`

pMziqF
˘

rks˚r´ds – IH˝
`

pMziqF
˘

r´k ´ d` rkF s “ IH˝
`

pMziqF
˘

r´k ´ crkF s.

Therefore, k` crkF ď pcrkF q{2, or equivalently ´k ě pcrkF q{2. Combining the two inequalities,
we conclude that k “ ´pcrkF q{2, as desired. �

Corollary 10.11. The graded vector space IHipMq is isomorphic to a direct sum of copies of mod-
ules of the form

IH
`

pMziqF
˘

r´pcrkF q{2s

for various nonempty flats F P LpMziq of even corank. Furthermore, multiplication on IHipMq by
βM ´ xi corresponds to multiplication on these modules by βMzi.
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Proof. By Lemma 5.2 and Corollary 8.6, we have

IH˝
`

pMziqF
˘

Υ
Mzi
ą∅ ¨ IH˝

`

pMziqF
˘

– IH
`

pMziqF
˘

.

Thus, the first statement follows from Corollary 10.7 and Proposition 10.10. The second statement
follows from that fact that ϕ∅

Mzipx∅q “ ´βMzi and ϕ∅
Mpθ

M
i px∅qq “ ϕ∅

Mpx∅ ` xiq “ ´βM ` xi. �

Corollary 10.12. The statement HLipMq holds.

Proof. This follows from Corollary 10.11 and HLppMziqF q for all nonempty flats F P LpMziq. �

10.4. The Hodge–Riemann relations. We start with an analysis analogous to what we had at the
beginning of Section 9.3. Let F be a nonempty flat of Mzi of even corank and suppose we have an
inclusion

f : IH˝
`

pMziqF
˘

r´pcrkF q{2s ãÑ IHipMq XR

as a direct summand. We have two pairings on IH˝ppMziq
F q that are a priori different: the one

induced by the inclusion of IH˝ppMziq
F q into CHppMziqF q, and the one induced by the inclusion

of IH˝ppMziq
F qr´pcrkF q{2s into IHipMq XR.

Lemma 10.13. These two pairings on IH˝ppMziq
F q are related by a constant factor c P Q with

p´1qpcrkF q{2c ą 0.

Proof. Both pairings are compatible with the H˝pMziq-module structure in the sense that xηξ, σy “
xξ, ησy for any η P H˝pMziq and ξ, σ P IH˝ppMziq

F q. Thus both pairings are given by isomor-
phisms IH˝ppMziq

F q˚ – IH˝ppMziq
F qrrkF s of graded H˝pMziq-modules. By Proposition 6.6 (2),

the H˝pMziq-module IH˝ppMziq
F q has only scalar endomorphisms, so any two such isomorphisms

must be related by a scalar factor c P Q.

To compute the sign of c, we pair the class 1 P IH˝ppMziq
F q with the class yF P IH˝ppMziq

F q.
Inside of CHppMziqF q, they pair to 1. Since θM

i pyF q “ yF̄ , by Proposition 2.13, Proposition 2.15, and
Lemma 10.8, their pairing inside of IHipMq X R, or equivalently inside of CHpMq, is equal to the
Poincaré pairing of ϕM

F̄
pfp1qqwith itself inside of IHpcrkF q{2pMF̄ q. The class ϕM

F̄
˝fp1q is annihilated

by yj for all j P EzF̄ , so it is primitive, and therefore the sign of its Poincaré pairing with itself is
equal to p´1qpcrkF q{2 by HRpMF̄ q. �

Since every summand IHppMziqF qr´pcrkF q{2s in Corollary 10.11 is the image of a summand
IHppMziqF qr´pcrkF q{2s of IHipMq XR. We denote the inclusion by

f : IHppMziqF qr´pcrkF q{2s ãÑ IHipMq
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which is the quotient map of f . Now, we have two pairings on IHppMziqF q that are a priori differ-
ent: the one induced by the inclusion of IHppMziqF q into CHppMziqF q, and the one induced by the
above inclusion f .

Lemma 10.14. These two pairings on IHppMziqF q are related by the same constant factor c P Q as
in Lemma 10.13 with p´1qpcrkF q{2c ą 0.

Proof. We need compare the Poincaré pairings in the Chow rings and the augmented Chow rings.
Given two classes η, ξ P IH˝ppMziq

F q, we denote their images in IHppMziqF q by η, ξ. By Proposi-
tion 2.5 and Proposition 2.7, we have

xη, ξyCHppMziqF q “ xη, x∅ξyCHppMziqF q.

On the other hand, we have

xfpηq, fpξqyCHpMq “ xfpηq, x∅fpξqyCHpMq “ xfpηq, pθ
M
i px∅q ´ xiqfpξqyCHpMq “ xfpηq, fpx∅ξqyCHpMq

where the last equality follows from the next lemma and f being an H˝pMziq-module homomor-
phism. Thus, the two pairings are related by the same constant factor c as in Lemma 10.13. �

Lemma 10.15. For any µ, ν P R, we have xµ, xiνyCHpMq “ 0.

Proof. By [BHM`20, Lemma 3.8], for any F P Sizt∅u, we have

xixFYi CHpiq Ď xi CHpiq .

SinceR is the direct sum of CHpiq and xFYi CHpiq for all F P Sizt∅u, it follows that xiR “ xi CHpiq “

Q, which is orthogonal to R with respect to the Poincaré pairing of CHpMq. Thus, the lemma
follows. �

Corollary 10.16. The statement HRipMq holds.

Proof. This follows from Corollary 10.11, Lemma 10.14, and HRppMziqF q for ∅ ‰ F P LpMziq. �

11. DEFORMATION ARGUMENTS

This section is devoted to arguments that establish hard Lefschetz or Hodge–Riemann proper-
ties by considering families of Lefschetz arguments. We assume throughout that E is nonempty.

11.1. Establishing HRă
d
2 pMq.

Proposition 11.1. We have

HLpMq, HLipMq, and HR
ă d

2
i pMq ùñ HRă

d
2 pMq.
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Proof. Given y “
ř

jPE cjyj with every cj ą 0, to show that IHpMq satisfies the Hodge–Riemann
relations with respect to multiplication by y in degrees less than d{2, we consider

yt – t ¨ ciyi `
ÿ

jPE,j‰i

cjyj .

By HLpMq and HLipMq, IHpMq satisfies the hard Lefschetz theorem with respect to multiplication
by yt for any t ě 0. Therefore, for any k ă d{2, the Hodge–Riemann form on IHkpMq associated
with any yt with t ě 0 has the same signature. Given the hard Lefschetz theorem, the Hodge–
Riemann relations are conditions on the signature of the Hodge–Riemann forms [AHK18, Propo-
sition 7.6], thus the fact that IHpMq satisfies the Hodge–Riemann relations with respect to multi-
plication by y0 implies that it satisfies the Hodge–Riemann relations for any yt with t ě 0. �

11.2. Establishing HRpMq. The purpose of this section is to prove Proposition 11.4, which gives
us a way to pass from HRipMq to HRpMq. If i has a parallel element, then the statements HRďki pMq
and HRďkpMq are the same. So, without loss of generality, we may assume that i has no parallel
element, or equivalently that tiu is a flat.

For any t ě 0, consider the degree one linear operator Lt on IHipMq given by multiplication by
β ´ txi. We will assume CDpMq throughout this section, so that we have

IHk
i pMq “ IHkpMq ‘ ψiMJk´1pM{iq and IHd´k´1

i pMq “ IHd´k´1pMq ‘ ψiMJd´k´2pM{iq.

Lemma 11.2. The map

Ld´2k´1
t : IHk

i pMq Ñ IHd´k´1
i pMq

is block diagonal with respect to the above direct sum decompositions.

Proof. Since β “
ř

iRG‰∅ xG, we have βxtiu “ 0. Since the image of ψiM is equal to the ideal of
CHpMq generated by xi, multiplication by β annihilates the image of ψiM. Thus, we have

Ld´2k´1
t ψiMJk´1pM{iq “ βd´2k´1ψiMJk´1pM{iq ` p´tqd´2k´1xd´2k´1

i ψiMJk´1pM{iq

“ xd´2k´1
i ψiMJk´1pM{iq

“ ψiM

´

ϕiMpx
d´2k´1
i qJk´1pM{iq

¯

“ ψiM

´

βd´2k´1
M{i Jk´1pM{iq

¯

“ ψiM

´

βd´2k´1
M{i IHk´1pM{iq

¯

“ ψiM
`

Jd´k´2pM{iq
˘

.

Thus Ld´2k´1
t maps ψiMJk´1pM{iq to ψiMJd´k´2pM{iq.
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By Propositions 2.9, 2.11, and 3.7, we have

xd´2k´1
i IHkpMq ¨ ψiMJk´1pM{iq “ ψiM

´

ϕiM
`

xd´2k´1
i IHkpMq

˘

¨ Jk´1pM{iq
¯

“ ψiM

´

ϕiM
`

IHkpMq
˘

¨ βd´2k´1Jk´1pM{iq
¯

“ ψiM

´

ϕiM
`

IHkpMq
˘

¨ Jd´k´2pM{iq
¯

“ IHkpMq ¨ ψiMJd´k´2pM{iq

“ 0.

Since IHpMq is the orthogonal complement of ψiMJpM{iq in IHipMq, it follows that

xd´2k´1
i IHkpMq Ď IHd´k´1pMq.

Hence Ld´2k´1
t maps IHkpMq to IHd´k´1pMq. �

Lemma 11.3. Let k ď pd ´ 1q{2 be given, and suppose that the statements HRipMq and HLďkpMq

hold. For any 0 ă t ď 1, the map

Ld´2k´1
t : IHkpMq Ñ IHd´k´1pMq

is an isomorphism.

Proof. First note that the statement for t “ 1 holds by Lemma 11.2 and HRipMq. For 0 ă t ă 1,
assume for the sake of contradiction that 0 ‰ η P IHkpMq and

´

βd´2k´1 ` p´txiq
d´2k´1

¯

η “ 0. (8)

Multiplying this equation by β and by xi gives

βd´2kη “ 0 and xd´2k
i η “ 0.

Thus η is a primitive class in IHkpMqwith respect to β ´ xi. By HRipMq,

p´1qkdegM

´´

βd´2k´1 ` p´xiq
d´2k´1

¯

η2
¯

ą 0.

But by an application of (8), this inequality is equivalent to

0 ă p´1qkdegM

´´

βd´2k´1 ` p´txiq
d´2k´1 ´ p´txiq

d´2k´1 ` p´xiq
d´2k´1

¯

η2
¯

“ p´1qkdegM

´´

´ p´txiq
d´2k´1 ` p´xiq

d´2k´1
¯

η2
¯

“ p´1qd´k´1degM

´

xd´2k´1
i p´td´2k´1 ` 1qη2

¯

.

Since 0 ă t ă 1, this inequality reduces to

p´1qd´k´1degMpx
d´2k´1
i η2q ą 0.
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On the other hand, by Lemma 3.5, we know that ϕiMIHpMq Ď IHpM{iq. Since βd´2k
M η “ 0 and

ϕiMpβMq “ βM{i, it follows that βd´2k
M{i ϕ

i
Mpηq “ 0. In other words, ϕiMpηq P IHkpM{iq is a primitive

class with respect to βM{i. Thus, by Proposition 2.9 and Proposition 2.11, we have

0 ď p´1qkdegM{i

´

βd´2k´2ϕiMpηq
2
¯

“ p´1qd´kdegM{i

´

ϕiM
`

xd´2k´2
i η2

˘

¯

“ p´1qd´kdegM

´

ψiMϕ
i
M

`

xd´2k´2
i η2

˘

¯

“ p´1qd´kdegMpx
d´2k´1
i η2q.

Now, we have a contradiction between the above two sets of inequalities. �

Proposition 11.4. For any k ď pd´ 1q{2, we have

CDpMq, HRipMq, and HLďkpMq ùñ HRďkpMq.

Proof. By induction on k, we may assume HRăkpMq. To prove HRkpMq, it suffices to prove that the
Hodge–Riemann form on IHkpMq with respect to L0 has the expected signature. More precisely,
by the proof of [AHK18, Proposition 7.6], it suffices to show that

sigL0
IHkpMq ´ sigL0

IHk´1pMq “ p´1qk
´

dim IHkpMq ´ dim IHk´1pMq
¯

,

where sigL0
denotes the signature of the Hodge–Riemann form associated to L0.

By Lemma 11.3 and PDpMq, the Hodge–Riemann form associated to Lt is non-degenerate for
all 0 ă t ď 1, and by HLďkpMq, the Hodge–Riemann form is also non-degenerate when t “ 0.
Thus, both sigLt

IHkpMq and sigLt
IHk´1pMq are constant as t varies in the closed interval r0, 1s.

Therefore, it suffices to show that

sigL1
IHkpMq ´ sigL1

IHk´1pMq “ p´1qk
´

dim IHkpMq ´ dim IHk´1pMq
¯

. (9)

By Lemma 11.2, we have

sigL1
IHk

i pMq “ sigL1
IHkpMq ` sigL1

ψiMJk´1pM{iq. (10)

For any η, ξ P Jk´1pM{iq, since β annihilates the image of ψiM, we have

Ld´2k´1
1 pψiMη ¨ ψ

i
Mξq “ p´xiq

d´2k´1pψiMη ¨ ψ
i
Mξq,

and hence

degM

´

Ld´2k´1
1 pψiMη ¨ ψ

i
Mξq

¯

“ degM

´

p´xiq
d´2k´1pψiMη ¨ ψ

i
Mξq

¯

“ degM

´

ψiMpβ
d´2k´1
M{i ηq ¨ ψiMξ

¯

.

By Lemma 2.17 (2) with F “ tiu and the fact that αMtiu “ 0 for degree reasons, we have

degM

´

ψiMpβ
d´2k´1
M{i ηq ¨ ψiMξ

¯

“ ´degM{i

´

βd´2k
M{i ηξ

¯

.
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Combining the above two sets of equations, we have

sigL1
ψiMJk´1pM{iq “ ´ sigβM{i

Jk´1pM{iq “ ´ sigβM{i
IHk´1pM{iq.

Therefore, by HRpM{iq, we have

sigL1
ψiMJk´1pM{iq ´ sigL1

ψiMJk´2pM{iq “ p´1qk
´

dimψiMJk´1pM{iq ´ dimψiMJk´2pM{iq
¯

.

By HRipMq, we have

sigL1
IHk

i pMq ´ sigL1
IHk´1

i pMq “ p´1qk
´

dim IHk
i pMq ´ dim IHk´1

i pMq
¯

.

The above two equations together with Equation (10) implies the desired Equation (9). �

11.3. Establishing HL˝pMq and HR
ă d

2
˝ pMq. We now use similar arguments to those in the previ-

ous subsection in order to obtain the statements HL˝pMq and HR
ă d

2
˝ pMq. Fix a positive sum

y “
ÿ

jPE

cjyj .

For any t ě 0, consider the degree one linear operator Lt on IH˝pMq given by multiplication by
y ´ tx∅. We will assume CDă

d
2 pMq, so that for any k ă d{2, we have a direct sum decomposition

IHk
˝pMq “ IHkpMq ‘ ψ∅

MJk´1pMq and IHd´k
˝ pMq “ IHd´kpMq ‘ ψ∅

MJd´k´1pMq.

Lemma 11.5. For any t ě 0, the linear map

Ld´2k
t : IHk

˝pMq Ñ IHd´k
˝ pMq

is block diagonal with respect to the above decompositions.

Proof. Since yx∅ “ 0 and y annihilates the image of ψ∅
M, we have

Ld´2k
t ψ∅

MJk´1pMq “ yd´2kψ∅
MJk´1pMq ` p´tqd´2kxd´2k

∅ ψ∅
MJk´1pMq

“ p´tqd´2kxd´2k
∅ ψ∅

MJk´1pMq

“ td´2kψ∅
M

´

βd´2kJk´1pMq
¯

“ td´2kψ∅
MJd´k´1pMq,

which is equal to ψ∅
MJd´k´1pMq if t ą 0 and 0 if t “ 0. In either case, we have

Ld´2k
t ψ∅

MJk´1pMq Ď ψ∅
MJd´k´1pMq.

By the above inclusion, for any η P IHkpMq and ξ P ψ∅
MJk´1pMq, we have

degM

`

Ld´2k
t pηq ¨ ξ

˘

“ degM

`

η ¨ Ld´2k
t pξq

˘

“ 0.
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Notice that the graded subspace IHpMq Ď IH˝pMq is the orthogonal complement of ψ∅
MJpMq. Thus,

we also have

Ld´2k
t IHkpMq Ď IHd´kpMq. �

Proposition 11.6. We have

CDă
d
2 pMq, HLď

d
2 pMq, and HLă

d´2
2 pMq ùñ HL

ď d
2

˝ pMq.

Proof. By Lemma 11.5, we need to show that Ld´2k
t induces isomorphisms IHkpMq – IHd´kpMq

and ψ∅
MJk´1pMq – ψ∅

MJd´k´1pMq for some t ą 0. In the proof of Lemma 11.5, we have shown that
when t ą 0 the induced isomorphism ψ∅

MJk´1pMq – ψ∅
MJd´k´1pMq follows from HLă

d´2
2 pMq.

The statement HLď
d
2 pMq implies that Ld´2k

0 : IHkpMq Ñ IHd´kpMq is an isomorphism. There-
fore, for sufficiently small t, the map Ld´2k

t : IHkpMq Ñ IHd´kpMq is also an isomorphism. �

Proposition 11.7. We have

CDă
d
2 pMq, HLpMq, HRă

d
2 pMq, HLă

d´2
2 pMq, and HRă

d´2
2 pMq ùñ HR

ă d
2

˝ pMq.

Proof. For k ă d{2, we prove HRk˝pMq by induction on k. It is clear that IH˝pMq satisfies the Hodge–
Riemann relations in degree zero with respect to Lt for t sufficiently small. Now fix 0 ă k ă d{2

and suppose that HRăk˝ pMq holds. We need to show that, for t sufficiently small,

sigLt IHk
˝pMq ´ sigLt IHk´1

˝ pMq “ p´1qk
´

dim IHk
˝pMq ´ dim IHk´1

˝ pMq
¯

.

By Lemma 11.5, we have

sigLt IHk
˝pMq “ sigLt IHkpMq ` sigLt ψ

∅
MJk´1pMq.

For η, ξ P Jk´1pMq “ IHk´1pMq, since each yi annihilates the image of ψ∅
M, we have

Ld´2k
t

`

ψ∅
Mη ¨ ψ

∅
Mξ

˘

“ p´tx∅q
d´2k

`

ψ∅
Mη ¨ ψ

∅
Mξ

˘

and hence

degM

´

Ld´2k
t

`

ψ∅
Mη ¨ ψ

∅
Mξ

˘

¯

“ degM

´

p´tx∅q
d´2k ψ∅

Mη ¨ ψ
∅
Mξ

¯

“ td´2k degM

´

ψ∅
M

`

βd´2kη
˘

¨ ψ∅
Mξ

¯

.

By Lemma 2.17 (1) with F “ ∅ and the fact that αM∅ “ 0 for degree reasons, we have

degM

´

ψ∅
M

`

βd´2kη
˘

¨ ψ∅
Mξ

¯

“ ´degM

´

βd´2k`1ηξ
¯

.

When t is positive, by the above two sets of equations, we have

sigLt ψ
∅
MJk´1pMq “ ´ sigβ Jk´1pMq “ ´ sigβ IHk´1pMq,
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and therefore
sigLt IHk

˝pMq “ sigLt IHkpMq ´ sigβ IHk´1pMq.

By HLpMq and HRă
d
2 pMq, the Hodge–Riemann forms on IHkpMq and IHk´1pMq associated to L0

are non-degenerate. Thus, for t sufficiently small, we have

sigLt IHkpMq ´ sigLt IHk´1pMq “ sigL0
IHkpMq ´ sigL0

IHk´1pMq

“ p´1qk
´

dim IHkpMq ´ dim IHk´1pMq
¯

.

We also have

sigβ IHk´1pMq ´ sigβ IHk´2pMq “ p´1q´1
´

dim IHk´1pMq ´ dim IHk´2pMq
¯

by HLă
d´2

2 pMq and HRă
d´2

2 pMq. Combining the above three sets of equations, we have

sigLt IHk
˝pMq ´ sigLt IHk´1

˝ pMq

“ p´1qk
´

dim IHkpMq ´ dim IHk´1pMq
¯

´ p´1qk´1
´

dim IHk´1pMq ´ dim IHk´2pMq
¯

“ p´1qk
´

dim IHk
˝pMq ´ dim IHk´1

˝ pMq
¯

. �

12. PROOF OF THE MAIN THEOREM

Sections 12.1 and 12.2 are devoted to combining the results that we have obtained in the pre-
vious sections in order to complete the proof of Theorem 3.16. In Section 12.3 we prove Proposi-
tions 1.6 and 1.7, thus concluding the proof of Theorem 1.2.

12.1. Proof of Theorem 3.16 for non-Boolean matroids. We now complete the inductive proof of
Theorem 3.16 when M is not the Boolean matroid; the Boolean case will be addressed in Section
12.2. Let M be a matroid that is not Boolean, and assume that Theorem 3.16 holds for any matroid
whose ground set is a proper subset of E. Since M is not Boolean, we may fix an element i P E
which is not a coloop. If i has a parallel element, then all of our statements about M are equivalent
to the corresponding statements about Mzi, so we may assume that it does not.

We recall the main results in the previous five sections. By Corollary 8.4, we have PD˝pMq,
PDpMq, CD˝pMq, and CDpMq. By Corollary 7.18, we have

NSă
d´2

2 pMq holds.

By Corollary 10.12 and Corollary 10.16, we have

both HLipMq and HRipMq hold,

and by Corollary 9.7 and Corollary 9.9, we have

CDă
d
2 pMq ùñ HL

ă d
2

i pMq and HR
ă d

2
i pMq.
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Proposition 12.1. The statement HLă
d´2

2 pMq holds.

Proof. Given 1 ď k ă d{2, let η P IHk´1pMq be a nonzero class such that

βd´2k`1η “ 0.

Recall from the proof of Lemma 11.2 that βxtiu “ 0, and therefore

pβ ´ xtiuq
d´2k ¨ pβηq “ 0.

In other words, the class βη is primitive in IHk
i pMq with respect to multiplication by β ´ xtiu. By

NSă
d´2

2 pMq, we have βη ‰ 0. Now, HRipMq implies that

0 ă p´1qkdegM

´

pβ ´ xtiuq
d´2k´1 ¨ pβηq2

¯

“ p´1qkdegM

`

βd´2k`1 ¨ η2
˘

.

This contradicts the assumption that βd´2k`1η “ 0. �

Proposition 12.2. For any k ď d{2, we have

PDďk´1pMq and HLďk´1pMq ùñ CDďkpMq.

Proof. By CD˝pMq, the statement CDďkpMq is equivalent to the direct sum decomposition

IHďk˝ pMq “ IHďkpMq ‘ ψ∅
MJďk´1pMq.

By definition, IHpMq is the orthogonal complement of ψ∅
MJpMq in IH˝pMq. Thus, the above direct

sum decomposition is equivalent to the statement that the Poincaré pairing of CHpMq restricts to
a non-degenerate pairing between ψ∅

MJďk´1pMq and ψ∅
MJěd´k´1pMq.

By Lemma 2.17 (1) with F “ ∅ and the fact that αM∅ “ 0 for degree reasons, we have

degM

`

ψ∅
Mµ ¨ ψ

∅
Mν

˘

“ ´degM

`

βM ¨ µν
˘

for µ, ν P CHpMq. Thus, by PDďk´1pMq and HLďk´1pMq, the Poincaré pairing of CHpMq restricts
to a non-degenerate pairing between ψ∅

MJďk´1pMq and ψ∅
MJěd´k´1pMq. �

By Proposition 8.8, we have

CD˝pMq and CDă
d
2 pMq ùñ NSă

d
2 pMq.

Proposition 12.3. We have

HLă
d´2

2 pMq and NSă
d
2 pMq ùñ HLpMq.

Proof. Given positive numbers cj for j P E, we let y “
ř

jPE cjyj . Suppose η P IHkpMq satisfies
yd´2kη “ 0. For any rank one flat G, we have ϕM

G pyq “
ř

jRG cjyj P CH1pMGq. Since yd´2kη “ 0,
we have

ϕM
G pyq

d´2k ¨ ϕM
G pηq “ 0.
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By Lemma 3.6 (1), we know that ϕM
G pηq P IHkpMGq. Thus, the class ϕM

G pηq P IHkpMGq is primitive
with respect to ϕM

G pyq. By HRpMGq, Proposition 2.13, and Proposition 2.15, for every rank one flat
G, we have

0 ď p´1qk degMG

´

ϕM
G pyq

d´2k´1 ¨ ϕM
G pηq

2
¯

“ p´1qk degM

´

yG ¨ y
d´2k´1η2

¯

,

and the equality holds if and only if ϕM
G pηq “ 0.

On the other hand, since yd´2kη “ 0, we have

0 “ p´1qk degM

´

yd´2kη2
¯

“ p´1qk degM

ˆˆ

ÿ

jPE

cjyj

˙

¨ yd´2k´1η2

˙

“ p´1qk
ÿ

jPE

cj degM

´

y
tju
¨ yd´2k´1η2

¯

,

where tju denotes the closure of tju in M. Since each cj ą 0, the above two sets of equations imply
that ϕM

G pηq “ 0 for every rank one flat G. Thus,

yGη “ ψG
`

ϕM
G pηq

˘

“ ψGp0q “ 0

for every rank one flat G. By NSă
d
2 pMq, it follows that η “ 0.

So we have proved that multiplication by yd´2k is an injective map from IHkpMq to IHd´kpMq. So
to conclude it is an isomorphism it is enough to know that these spaces have the same dimension.
We know that PD˝pMq holds, and since IHpMq is the perpendicular space to ψ∅

MpJpMqq in IH˝pMq,
it is enough to know that dim Jk´1pMq “ dim Jd´k´1pMq. This follows from HLă

d´2
2 pMq. �

Proposition 12.4. We have

HR˝pMq ùñ NS˝pMq.

Proof. Let y “
ř

jPE yj . By HR˝pMq, we can choose ε ą 0 such that IH˝pMq satisfies the Hodge–
Riemann relations with respect to multiplication by y ´ εx∅. Suppose that η is a nonzero element
of the socle of IHk

˝pMq for some k ď d{2. By HR˝pMq, we have

p´1qk degM

´

py ´ εx∅q
d´2kη2

¯

ą 0. (11)

Since η is annihilated by every yj , Lemma 5.2 implies that η is a multiple of x∅. On the other hand,
since η is annihilated by x∅, Lemma 5.2 implies that η is in the ideal spanned by the yj . Thus we
have η2 “ 0, which contradicts Equation (11). �

Proposition 12.5. We have

NS˝pMq ùñ NSpMq.
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Proof. Suppose that k ď d{2 and η P IHk´1pMq is an element of the socle, that is, βη “ 0. By Corol-
lary 8.7, it follows that ψ∅

Mpηq is a multiple of x∅, and hence annihilated by each yj by Lemma 5.2.
Furthermore, by Proposition 2.5, we have

x∅ψ
∅
Mpηq “ ψ∅

M

`

ϕ∅
Mpx∅qη

˘

“ ψ∅
Mp´βηq “ 0.

Thus, ψ∅
Mpηq P IHk

˝pMq is annihilated by each yj and x∅. Then NS˝pMq implies that ψ∅
Mpηq “ 0, and

the injectivity of ψ∅
M implies that η “ 0. �

Proposition 12.6. We have

HLă
d´2

2 pMq and NSpMq ùñ HLpMq.

Proof. When d is odd, the statements HLă
d´2

2 pMq and HLpMq are the same. When d is even, the
only missing case is HL

d´2
2 pMq, which is exactly the same as NS

d´2
2 pMq. �

From Corollary 8.4, we have PD˝, PD, CD˝, and CD of M. Following Figure 1, we have obtained
CD, NS, NS˝, HL, HL˝, HL, HR, HR˝, and HR. The statement PD follows from HL and HR. The
statement NS is proved in Proposition 12.5. So we have completed the proof of Theorem 3.16
assuming M is not the Boolean matroid.

12.2. Proof of Theorem 3.16: Boolean case. Suppose M is the Boolean matroid onE “ t1, 2, . . . , du
with d ą 0.

Proposition 12.7. The canonical decomposition CDpMq of CHpMq holds. We have IHpMq “ HpMq,
and the space JpMq is spanned by 1, β, . . . , βd´2.

Proof. Let J1pMq be the subspace of HpMq spanned by 1, β, . . . , βd´2. We have HpMq Ď IHpMq, since
IHpMq is an HpMq-module that contains 1. Since βd´2 is not zero, we have J1pMq Ď JpMq.

Thus if we can show there is a direct sum decomposition

CHpMq “ HpMq ‘
à

∅ăFăE
ψFM

`

J1pMF q b CHpMF q
˘

, (12)

the proposition will follow.

For a Boolean matroid M, CHpMq admits an automorphism

τ : CHpMq Ñ CHpMq, xF ÞÑ xEzF .

The automorphism τ exchanges α and β. It is then easy to see that the decomposition (12) is the
result of applying τ to the decomposition pD3q of [BHM`20].

Alternatively, one can use the basis of CHpMq given by Feichtner and Yuzvinsky [FY04, Corol-
lary 1]. Their basis is given by all products

xm1
G1
xm2
G2
¨ ¨ ¨xmkGkα

mk`1 ,
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where G1 ă G2 ă ¨ ¨ ¨ ă Gk is a (possibly empty) flag of nonempty proper flats and we have
m1 ă rkG1, mi ă rkGi ´ rkGi´1 for 1 ă i ď k, and mk`1 ă crkGk. Applying τ gives

βmk`1pxFkq
mk ¨ ¨ ¨ pxF1q

m1 ,

where Fi “ EzGi. If k ‰ 0 this is in ψFk
´

pβMFk
qmk b CHpMFkq

¯

, while if k “ 0 it is in HpMq. The
direct sum decomposition (12) follows. �

Since IHpMq is isomorphic to HpMq, which is spanned by 1, β, β2, . . . , βd´1, we immediately
deduce NSpMq and HLpMq. Notice that the involution τ induces the identity map on CHd´1pMq.
Therefore, degMpβ

d´1q “ degMpα
d´1q “ 1, and we have PDpMq and HRpMq.

The proof of Proposition 12.2 also works for the Boolean matroid, so from HLpMq and HRpMq

we get CDpMq. By Lemma 5.2 and Corollary 8.6, we have an isomorphism of graded vector spaces

IH˝pMq∅ – ϕ∅
MpIH˝pMqq “ IHpMq.

Since ψ∅
Mpβ

iq “ px∅q
i`1, it follows that ψ∅

MJpMq is spanned by x∅, . . . , xd´1
∅ . Since x∅yj “ 0 for any

j P E, we have an isomorphism of vector spaces
`

ψ∅
MJpMq

˘

∅ – ψ∅
MJpMq.

Since IHpMq has total dimension d and JpMq has total dimension d ´ 1, the stalk IHpMq∅ is one-
dimensional, and hence IHpMq∅ – IH0pMq – Q. Therefore, IHpMq is generated in degree zero as a
module over HpMq. Equivalently, IHpMq is isomorphic to a quotient of HpMq.

On the other hand, since M is the Boolean matroid, HpMq “ Qry1, . . . , yds{py
2
1, . . . , y

2
dq is a

Poincaré duality algebra. Since IHdpMq is one-dimensional, the quotient map HpMq Ñ IHpMq

is an isomorphism in degree d. Therefore, the quotient map must be an isomorphism, that is,

IHpMq – HpMq “ Qry1, . . . , yds{py
2
1, . . . , y

2
dq.

Now, it is a well-known fact that HpMq satisfies Poincaré duality, the hard Lefschetz theorem, and
the Hodge–Riemann relations. The statement PD˝pMq follows from PDpMq, PDpMq, and HLpMq.
By Lemma 11.2, the statement HL˝pMq follows from HLpMq and HLpMq and the statement HR˝pMq
follows from HRpMq and HRpMq.

12.3. Proofs of Propositions 1.6 and 1.7. Recall from Section 1.2 that the proof of Theorem 1.2
relies on Theorem 1.5, which we have already proved as part of Theorem 3.16, as well as on
Propositions 1.6 and 1.7. In this subsection, we will prove these remaining two propositions.

Proof of Proposition 1.6. As parts of Theorem 3.16, we have already obtained PDpMq and NSpMq. By
PDpMq, the socle of IHpMq is equal to the orthogonal complement pm IHpMqqK in IHpMq. By NSpMq,
we know that pm IHpMqqK “ 0 in degrees less than or equal to d{2. Thus, m IHpMq “ IHpMq in
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degrees greater than or equal to d{2, or equivalently, IHpMq∅ “ 0 in degrees greater than or equal
to d{2. �

Proof of Proposition 1.7. Choose an ordering F1, . . . , Fr of LpMq refining the natural partial order as
in Section 5.3 with the further property that Σµ “ tFµ, . . . , Fru “ LěppMq and Σν “ tFν , . . . , Fru “

Lěp`1pMq. By definition, we have

mp IHpMq{mp`1 IHpMq –
IHpMqΣµ
IHpMqΣν

. (13)

We claim that there exists a canonical isomorphism

à

FPLppMq

IHpMqěF
IHpMqąF

–
IHpMqΣµ
IHpMqΣν

. (14)

In fact, the natural maps
IHpMqěF
IHpMqąF

Ñ
IHpMqΣµ
IHpMqΣν

induce a surjective map
à

FPLppMq

IHpMqěF
IHpMqąF

Ñ
IHpMqΣµ
IHpMqΣν

.

To show that the above map is an isomorphism, it suffices to show that both sides have the same
dimension. By Proposition 5.8, we have

dim

ˆ

IHpMqΣµ
IHpMqΣν

˙

“
ÿ

µďkďν´1

dim

ˆ

IHpMqΣk
IHpMqΣk`1

˙

“
ÿ

µďkďν´1

dim IHpMqFk “
ÿ

FPLppMq

dim IHpMqF .

Thus, the isomorphism in Equation (14) follows.

By Lemma 5.6 and Lemma 6.2 (1), for any flat F , we have canonical isomorphisms

IHpMqěF
IHpMqąF

–
`

IHpMqr´ rkF s
˘

F
–

`

yF IHpMq
˘

∅ –
`

IHpMF qr´ rkF s
˘

∅. (15)

Now, the proposition follows from Equations (13), (14), and (15). �

APPENDIX A. EQUIVARIANT POLYNOMIALS

The purpose of this appendix is to give precise definitions of equivariant Kazhdan–Lusztig
polynomials, equivariant Z-polynomials, and equivariant inverse Kazhdan–Lusztig polynomials.
We also prove an equivariant analogue of the characterization of equivariant Kazhdan–Lusztig
polynomials and Z-polynomials polynomials that appears in [BV20, Theorem 2.2].

Let Γ be a finite group, and let VReppΓq be the ring of virtual representations of Γ over Q with
coefficients in Q. For any finite-dimensional representation V of Γ, let rV s be its class in VReppΓq.
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If Γ acts on a set S and x P S, we write Γx Ď Γ for the stabilizer of x. We use the following standard
lemma [Pro20, Lemma 2.7].

Lemma A.1. Let V “
À

xPS Vx be a vector space that decomposes as a direct sum of pieces indexed
by a finite set S, and suppose that Γ acts linearly on V and acts by permutations on S. If γ¨Vx “ Vγ¨x

for all x P S and γ P Γ, then

rV s “
à

xPS

|Γx|

|Γ|
IndΓ

ΓxrVxs P VReppΓq.

Let M be a matroid on the ground set E, and let Γ be a finite group acting on M. In other words,
the set E is equipped with an action of Γ by permutations that take flats of M to flats of M. We
define the equivariant characteristic polynomial

χΓ
Mptq–

rk M
ÿ

k“0

p´1qkrOSkpMqs trk M´k P VReppΓqrts,

where OSkpMq is the degree k part of the Orlik–Solomon algebra of M. The dimension homo-
morphism from VReppΓqrts to Zrts takes the equivariant characteristic polynomial χΓ

Mptq to the
ordinary characteristic polynomial χMptq, see [OT92, Chapter 3]. The following statement appears
in [GPY17, Theorem 2.8].

Theorem A.2. To each matroid M and symmetry group Γ, there is a unique way to assign a poly-
nomial PΓ

Mptqwith coefficients in VReppΓqwith the following properties:

(a) If the rank of M is zero, then PΓ
Mptq “ 1.

(b) For every matroid M of positive rank, the degree of PΓ
Mptq is strictly less than rk M{2.

(c) For every matroid M, we have trk MPMpt
´1q “

ÿ

FPLpMq

|ΓF |

|Γ|
IndΓ

ΓF

´

χΓF
MF ptqP

ΓF
MF
ptq

¯

.

The polynomial PΓ
Mptq is called the equivariant Kazhdan–Lusztig polynomial of M with respect

to the action of Γ.

The following definition appears in [PXY18, Section 6].

Definition A.3. The equivariant Z-polynomial of M with respect to the action of Γ is

ZΓ
Mptq –

ÿ

FPLpMq

|ΓF |

|Γ|
IndΓ

ΓF

´

PΓF
MF
ptq

¯

trkF P VReppΓqrts.

A polynomial fptq P VReppΓqrts is called palindromic if tdeg fptqfpt´1q “ fptq. The fact that the
equivariant Z-polynomial is palindromic is asserted without proof in [PXY18, Section 6]; a full
proof appears in [Pro20, Corollary 4.5].
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Lemma A.4. For any polynomial fptq of degree d, there is a unique polynomial gptq of degree
strictly less than d{2 such that fptq ` gptq is palindromic.

Proof. We must take gptq to be the truncation of tdfpt´1q ´ fptq to degree td´1
2 u. �

The following proposition is an equivariant analogue of [BV20, Theorem 2.2].

Corollary A.5. Let M be a matroid of positive rank, let P̃Γ
Mptq be a polynomial of degree strictly

less than rk M{2 in VReppΓqrts, and let

Z̃Γ
Mptq– P̃Γ

Mptq `
ÿ

∅‰FPLpMq

|ΓF |

|Γ|
IndΓ

ΓF

´

PΓF
MF
ptq

¯

trkF .

If Z̃Γ
Mptq is a palindromic polynomial, then P̃Γ

Mptq “ PΓ
Mptq and Z̃Γ

Mptq “ ZΓ
Mptq.

Proof. By definition of ZΓ
Mptq, we have

ZΓ
Mptq “ PΓ

Mptq `
ÿ

∅‰FPLpMq

|ΓF |

|Γ|
IndΓ

ΓF

´

PΓF
MF
ptq

¯

trkF .

The corollary then follows from Lemma A.4 and the palindromicity of Z̃Γ
Mptq. �

When the rank of M is positive, by [GX20, Theorem 1.3], the inverse Kazhdan–Lusztig polyno-
mial of M satisfies

ÿ

FPLpMq

p´1qrkFPMF ptqQMF
ptq “ 0.

We use the recurrence relation to define an equivariant analogue of QMptq.

Definition A.6. The equivariant inverse Kazhdan–Lusztig polynomial of M with respect to the
action of Γ is defined by the condition that QΓ

Mptq is equal to the trivial representation if the rank
of M is zero, and otherwise

ÿ

FPLpMq

p´1qrkF
|ΓF |

|Γ|
IndΓ

ΓF

´

PΓF
MF ptqQ

ΓF
MF
ptq

¯

“ 0.

Equivalently, we recursively put

QΓ
Mptq “ ´

ÿ

∅‰FPLpMq
p´1qrkF

|ΓF |

|Γ|
IndΓ

ΓF

´

PΓF
MF ptqQ

ΓF
MF
ptq

¯

P VReppΓqrts.

For equivalent definitions of PΓ
Mptq, Z

Γ
Mptq, andQΓ

Mptq in the framework of equivariant incidence
algebras and equivariant Kazhdan–Lusztig–Stanley theory, we refer to [Pro20, Section 4].
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