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ABSTRACT. We give a semi-small orthogonal decomposition of the Chow ring of a matroid M. The
decomposition is used to give simple proofs of Poincaré duality, the hard Lefschetz theorem, and the
Hodge–Riemann relations for the Chow ring, recovering the main result of [AHK18]. We also show
that a similar semi-small orthogonal decomposition holds for the augmented Chow ring of M.

1. INTRODUCTION

A matroid M on a finite set E is a nonempty collection of subsets of E, called flats of M, that
satisfies the following properties:

(1) The intersection of any two flats is a flat.

(2) For any flat F , any element in EzF is contained in exactly one flat that is minimal among the
flats strictly containing F .

Throughout, we suppose in addition that M is a loopless matroid:

(3) The empty subset of E is a flat.

We write LpMq for the lattice of all flats of M. Every maximal flag of proper flats of M has the
same cardinality d, called the rank of M. A matroid can be equivalently defined in terms of its
independent sets or the rank function. For background in matroid theory, we refer to [Oxl11] and
[Wel76].

The first aim of the present paper is to decompose the Chow ring of M as a module over the
Chow ring of the deletion Mzi (Theorem 1.1). The decomposition resembles the decomposition of
the cohomology ring of a projective variety induced by a semi-small map. In Section 4, we use
the decomposition to give simple proofs of Poincaré duality, the hard Lefschetz theorem, and the
Hodge–Riemann relations for the Chow ring, recovering the main result of [AHK18].
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The second aim of the present paper is to introduce the augmented Chow ring of M, which
contains the graded Möbius algebra of M as a subalgebra. We give an analogous semi-small de-
composition of the augmented Chow ring of M as a module over the augmented Chow ring of the
deletion Mzi (Theorem 1.2), and use this to prove Poincaré duality, the hard Lefschetz theorem,
and the Hodge–Riemann relations for the augmented Chow ring. These results will play a major
role in the forthcoming paper [BHM`], where we will prove the Top-Heavy conjecture along with
the nonnegativity of the coefficients of the Kazhdan–Lusztig polynomial of a matroid.

1.1. Let SM be the ring of polynomials with variables labeled by the nonempty proper flats of M:

SM – QrxF |F is a nonempty proper flat of Ms.

The Chow ring of M, introduced by Feichtner and Yuzvinsky in [FY04], is the quotient algebra1

CHpMq – SM{pIM ` JMq,

where IM is the ideal generated by the linear forms
ÿ

i1PF

xF ´
ÿ

i2PF

xF , for every pair of distinct elements i1 and i2 of E,

and JM is the ideal generated by the quadratic monomials

xF1xF2 , for every pair of incomparable nonempty proper flats F1 and F2 of M.

When E is nonempty, the Chow ring of M admits a degree map

deg
M

: CHd´1pMq ÝÑ Q, xF –
ź

FPF

xF ÞÝÑ 1,

where F is any complete flag of nonempty proper flats of M (Definition 2.12). For any integer k,
the degree map defines the Poincaré pairing

CHkpMq ˆ CHd´k´1pMq ÝÑ Q, pη1, η2q ÞÝÑ deg
M
pη1η2q.

If M is representable over a field,2 then the Chow ring of M is isomorphic to the Chow ring of a
smooth projective variety over the field (Remark 2.13).

Let i be an element ofE, and let Mzi be the deletion of i from M. By definition, Mzi is the matroid
on Ezi whose flats are the sets of the form F zi for a flat F of M. The Chow rings of M and Mzi are
related by the graded algebra homomorphism

θi “ θM
i : CHpMziq ÝÑ CHpMq, xF ÞÝÑ xF ` xFYi,

1A slightly different presentation for the Chow ring of M was used in [FY04] in a more general context. The present
description was used in [AHK18], where the Chow ring of M was denoted ApMq. For a comparison of the two presen-
tations, see [BES].

2 We say that M is representable over a field F if there exists a linear subspace V Ď FE such that S Ď E is independent
if and only if the projection from V to FS is surjective. Almost all matroids are not representable over any field [Nel18].
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where a variable in the target is set to zero if its label is not a flat of M. Let CHpiq be the image of
the homomorphism θi, and let Si be the collection

Si “ SipMq “
 

F |F is a nonempty proper subset of Ezi such that F P LpMq and F Y i P LpMq
(

.

The element i is said to be a coloop of M if the ranks of M and Mzi are not equal.

Theorem 1.1. If i is not a coloop of M, there is a direct sum decomposition of CHpMq into inde-
composable graded CHpMziq-modules

CHpMq “ CHpiq ‘
à

FPSi

xFYiCHpiq. (D1)

All pairs of distinct summands are orthogonal for the Poincaré pairing of CHpMq. If i is a coloop of
M, there is a direct sum decomposition of CHpMq into indecomposable graded CHpMziq-modules3

CHpMq “ CHpiq ‘ xEziCHpiq ‘
à

FPSi

xFYiCHpiq. (D2)

All pairs of distinct summands except for the first two are orthogonal for the Poincaré pairing of
CHpMq.

We write rkM : 2E Ñ N for the rank function of M. For any proper flat F of M, we set4

MF – the localization of M at F , a loopless matroid on F of rank equal to rkMpF q,

MF – the contraction of M by F , a loopless matroid on EzF of rank equal to d´ rkMpF q.

The lattice of flats of MF can be identified with the lattice of flats of M that are contained in F ,
and the lattice of flats of MF can be identified with the lattice of flats of M that contain F . The
CHpMziq-module summands in the decompositions (D1) and (D2) admit isomorphisms

CHpiq – CHpMziq and xFYiCHpiq – CHpMFYiq b CHpMF qr´1s,

where r´1s indicates a degree shift (Propositions 3.4 and 3.5). In addition, if i is a coloop of M,

xEziCHpiq – CHpMziqr´1s.

Numerically, the semi-smallness of the decomposition (D1) is reflected in the identity

dimxFYiCHk´1
piq “ dimxFYiCHd´k´2

piq for F P Si.

3When E “ tiu, we treat the symbol x∅ as zero in the right-hand side of (D2).
4The symbols MF and MF appear inconsistently in the literature, sometimes this way and sometimes interchanged.

The localization is frequently called the restriction. On the other hand, the contraction is also sometimes called the re-
striction, especially in the context of hyperplane arrangements, so we avoid the word restriction to minimize ambiguity.
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When M is the Boolean matroid on E, the graded dimension of CHpMq is given by the Eulerian
numbers

〈
d
k

〉
, and the decomposition (D2) specializes to the known quadratic recurrence relation

sdptq “ sd´1ptq ` t
d´2
ÿ

k“0

ˆ

d´ 1

k

˙

skptqsd´k´1ptq, s0ptq “ 1,

where skptq is the k-th Eulerian polynomial [Pet15, Theorem 1.5].

1.2. We also give similar decompositions for the augmented Chow ring of M, which we now
introduce. Let SM be the ring of polynomials in two sets of variables

SM – Qryi |i is an element of Es b QrxF |F is a proper flat of Ms.

The augmented Chow ring of M is the quotient algebra

CHpMq – SM{pIM ` JMq,

where IM is the ideal generated by the linear forms

yi ´
ÿ

iRF

xF , for every element i of E,

and JM is the ideal generated by the quadratic monomials

xF1xF2 , for every pair of incomparable proper flats F1 and F2 of M, and

yi xF , for every element i of E and every proper flat F of M not containing i.

The augmented Chow ring of M admits a degree map

degM : CHdpMq ÝÑ Q, xF –
ź

FPF

xF ÞÝÑ 1,

where F is any complete flag of proper flats of M (Definition 2.12). For any integer k, the degree
map defines the Poincaré pairing

CHkpMq ˆ CHd´kpMq ÝÑ Q, pη1, η2q ÞÝÑ degMpη1η2q.

If M is representable over a field, then the augmented Chow ring of M is isomorphic to the Chow
ring of a smooth projective variety over the field (Remark 2.13). The augmented Chow ring con-
tains the graded Möbius algebra HpMq (Proposition 2.15), and it is related to the Chow ring of M by
the isomorphism

CHpMq – CHpMq bHpMq Q.

The HpMq-module structure of CHpMqwill be studied in detail in the forthcoming paper [BHM`].

As before, we write Mzi for the matroid obtained from M by deleting the element i. The aug-
mented Chow rings of M and Mzi are related by the graded algebra homomorphism

θi “ θM
i : CHpMziq ÝÑ CHpMq, xF ÞÝÑ xF ` xFYi,
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where a variable in the target is set to zero if its label is not a flat of M. Let CHpiq be the image of
the homomorphism θi, and let Si be the collection

Si “ SipMq :“
 

F |F is a proper subset of Ezi such that F P LpMq and F Y i P LpMq
(

.

Theorem 1.2. If i is not a coloop of M, there is a direct sum decomposition of CHpMq into inde-
composable graded CHpMziq-modules

CHpMq “ CHpiq ‘
à

FPSi

xFYiCHpiq. (D1)

All pairs of distinct summands are orthogonal for the Poincaré pairing of CHpMq. If i is a coloop of
M, there is a direct sum decomposition of CHpMq into indecomposable graded CHpMziq-modules

CHpMq “ CHpiq ‘ xEziCHpiq ‘
à

FPSi

xFYiCHpiq. (D2)

All pairs of distinct summands except for the first two are orthogonal for the Poincaré pairing of
CHpMq.

The CHpMziq-module summands in the decompositions (D1) and (D2) admit isomorphisms

CHpiq – CHpMziq and xFYiCHpiq – CHpMFYiq b CHpMF qr´1s,

where r´1s indicates a degree shift (Propositions 3.4 and 3.5). In addition, if i is a coloop of M,

xEziCHpiq – CHpMziqr´1s.

Numerically, the semi-smallness of the decomposition (D1) is reflected in the identity

dimxFYiCHk´1
piq “ dimxFYiCHd´k´1

piq for F P Si.

1.3. Let B be the Boolean matroid on E. By definition, every subset of E is a flat of B. The Chow
rings of B and M are related by the surjective graded algebra homomorphism

CHpBq ÝÑ CHpMq, xS ÞÝÑ xS ,

where a variable in the target is set to zero if its label is not a flat of M. Similarly, we have a
surjective graded algebra homomorphism

CHpBq ÝÑ CHpMq, xS ÞÝÑ xS ,

where a variable in the target is set to zero if its label is not a flat of M. As in [AHK18, Section 4], we
may identify the Chow ring CHpBqwith the ring of piecewise polynomial functions modulo linear
functions on the normal fan ΠB of the standard permutohedron in RE . Similarly, the augmented
Chow ring CHpBq can be identified with the ring of piecewise polynomial functions modulo linear
functions of the normal fan ΠB of the stellahedron in RE (Definition 2.4). A convex piecewise
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linear function on a complete fan is said to be strictly convex if there is a bijection between the
cones in the fan and the faces of the graph of the function.

In Section 4, we use Theorems 1.1 and 1.2 to give simple proofs of Poincaré duality, the hard
Lefschetz theorem, and the Hodge–Riemann relations for CHpMq and CHpMq.

Theorem 1.3. Let ` be a strictly convex piecewise linear function on ΠB, viewed as an element of
CH1pMq.

(1) (Poincaré duality theorem) For every nonnegative integer k ă d
2 , the bilinear pairing

CHkpMq ˆ CHd´k´1pMq ÝÑ Q, pη1, η2q ÞÝÑ deg
M
pη1η2q

is non-degenerate.

(2) (Hard Lefschetz theorem) For every nonnegative integer k ă d
2 , the multiplication map

CHkpMq ÝÑ CHd´k´1pMq, η ÞÝÑ `d´2k´1η

is an isomorphism.

(3) (Hodge–Riemann relations) For every nonnegative integer k ă d
2 , the bilinear form

CHkpMq ˆ CHkpMq ÝÑ Q, pη1, η2q ÞÝÑ p´1qkdeg
M
p`d´2k´1η1η2q

is positive definite on the kernel of multiplication by `d´2k.

Let ` be a strictly convex piecewise linear function on ΠB, viewed as an element of CH1pMq.

(4) (Poincaré duality theorem) For every nonnegative integer k ď d
2 , the bilinear pairing

CHkpMq ˆ CHd´kpMq ÝÑ Q, pη1, η2q ÞÝÑ degMpη1η2q

is non-degenerate.

(5) (Hard Lefschetz theorem) For every nonnegative integer k ď d
2 , the multiplication map

CHkpMq ÝÑ CHd´kpMq, η ÞÝÑ `d´2kη

is an isomorphism.

(6) (Hodge–Riemann relations) For every nonnegative integer k ď d
2 , the bilinear form

CHkpMq ˆ CHkpMq ÝÑ Q, pη1, η2q ÞÝÑ p´1qk degMp`
d´2kη1η2q

is positive definite on the kernel of multiplication by `d´2k`1.
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Theorem 1.3 holds non-vacuously, as there are strictly convex piecewise linear functions on ΠB

and ΠB (Proposition 2.6). The first part of Theorem 1.3 on CHpMq recovers the main result of
[AHK18].5 The second part of Theorem 1.3 on CHpMq is new.

1.4. In Section 5, we use Theorems 1.1 and 1.2 to obtain decompositions of CHpMq and CHpMq

related to those appearing in [AHK18, Theorem 6.18]. Let HαpMq be the subalgebra of CHpMq

generated by the element

αM –
ÿ

iPG

xG P CH1pMq,

where the sum is over all nonempty proper flats G of M containing a given element i in E, and let
HαpMq be the subalgebra of CHpMq generated by the element

αM –
ÿ

G

xG P CH1pMq,

where the sum is over all proper flats G of M. We define graded subspaces JαpMq and JαpMq by

JkαpMq –

$

&

%

Hk
αpMq if k ‰ d´ 1,

0 if k “ d´ 1,
JkαpMq –

$

&

%

Hk
αpMq if k ‰ d,

0 if k “ d.

A degree computation shows that the elements αd´1
M and αdM are nonzero (Proposition 2.26).

Theorem 1.4. Let C “ CpMq be the set of all nonempty proper flats of M, and let C “ CpMq be the
set of all proper flats of M with rank at least two.

(1) We have a decomposition of HαpMq-modules

CHpMq “ HαpMq ‘
à

FPC

ψF
M

CHpMF q b JαpM
F q. (D3)

All pairs of distinct summands are orthogonal for the Poincaré pairing of CHpMq.

(2) We have a decomposition of HαpMq-modules

CHpMq “ HαpMq ‘
à

FPC

ψFM CHpMF q b JαpM
F q. (D3)

All pairs of distinct summands are orthogonal for the Poincaré pairing of CHpMq.

Here ψF
M

is the injective CHpMq-module homomorphism (Propositions 2.21 and 2.22)

ψF
M

: CHpMF q b CHpMF q ÝÑ CHpMq,
ź

F 1

xF 1zF b
ź

F 2

xF 2 ÞÝÑ xF
ź

F 1

xF 1
ź

F 2

xF 2 ,

5Independent proofs of Poincaré duality for CHpMqwere given in [BES] and [BDF]. The authors of [BES] also prove
the degree 1 Hodge–Riemann relations for CHpMq.
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and ψFM is the injective CHpMq-module homomorphism (Propositions 2.18 and 2.19)

ψFM : CHpMF q b CHpMF q ÝÑ CHpMq
ź

F 1

xF 1zF b
ź

F 2

xF 2 ÞÝÑ xF
ź

F 1

xF 1
ź

F 2

xF 2 .

When M is the Boolean matroid on E, the decomposition (D3) specializes to a linear recurrence
relation for the Eulerian polynomials

0 “ 1`
d
ÿ

k“0

ˆ

d

k

˙

t´ td´k

1´ t
skptq, s0ptq “ 1.

When applied repeatedly, Theorem 1.4 produces bases of CHpMq and CHpMq that are permuted
by the automorphism group of M.6

Acknowledgments. We thank Christopher Eur and Matthew Stevens for useful discussions.

2. THE CHOW RING AND THE AUGMENTED CHOW RING OF A MATROID

In this section, we collect the various properties of the algebras CHpMq and CHpMq that we
will need in order to prove Theorems 1.1–1.4. In Section 2.1, we review the definition and basic
properties of the Bergman fan and introduce the closely related augmented Bergman fan of a ma-
troid. Section 2.2 is devoted to understanding the stars of the various rays in these two fans,
while Section 2.3 is where we compute the space of balanced top-dimensional weights on each
fan. Feichtner and Yuzvinsky showed that the Chow ring of a matroid coincides with the Chow
ring of the toric variety associated with its Bergman fan [FY04, Theorem 3], and we establish the
analogous result for the augmented Chow ring in Section 2.4. Section 2.5 is where we show that
the augmented Chow ring contains the graded Möbius algebra. In Section 2.6, we use the results
of Section 2.2 to construct various homomorphisms that relate the Chow and augmented Chow
rings of different matroids.

Remark 2.1. It is worth noting why we need to interpret CHpMq and CHpMq as Chow rings of toric
varieties. First, the study of balanced weights on the Bergman fan and augmented Bergman fan
allow us to show that CHd´1pMq and CHdpMq are nonzero, which is not easy to prove directly
from the definitions. The definition of the pullback and pushforward maps in Section 2.6 is made
cleaner by thinking about fans, though it would also be possible to define these maps by taking
Propositions 2.17, 2.18, 2.20, 2.21, 2.23, and 2.24 as definitions. Finally, and most importantly, the
fan perspective will be essential for understanding the ample classes that appear in Theorem 1.3.

6Different bases of CHpMq are given in [FY04, Corollary 1] and [BES, Corollary 3.3.3].
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2.1. Fans. Let E be a finite set, and let M be a loopless matroid of rank d on the ground set E. We
write rkM for the rank function of M, and write clM for the closure operator of M, which for a set S
returns the smallest flat containing S. The independence complex IM of M is the simplicial complex
of independent sets of M. A set I Ď E is independent if and only if the rank of clMpIq is |I|. The
vertices of IM are the elements of the ground set E, and a collection of vertices is a face of IM when
the corresponding set of elements is an independent set of M. The Bergman complex ∆M of M is the
order complex of the poset of nonempty proper flats of M. The vertices of ∆M are the nonempty
proper flats of M, and a collection of vertices is a face of ∆M when the corresponding set of flats
is a flag. The independence complex of M is pure of dimension d ´ 1, and the Bergman complex
of M is pure of dimension d ´ 2. For a detailed study of the simplicial complexes IM and ∆M, we
refer to [Bjö92]. We introduce the augmented Bergman complex ∆M of M as a simplicial complex that
interpolates between the independence complex and the Bergman complex of M.

Definition 2.2. Let I be an independent set of M, and let F be a flag of proper flats of M. When I
is contained in every flat in F, we say that I is compatible with F and write I ď F. The augmented
Bergman complex ∆M of M is the simplicial complex of all compatible pairs I ď F, where I is an
independent set of M and F is a flag of proper flats of M.

A vertex of the augmented Bergman complex ∆M is either a singleton subset of E or a proper
flat of M. More precisely, the vertices of ∆M are the compatible pairs either of the form tiu ď ∅
or of the form ∅ ď tF u, where i is an element of E and F is a proper flat of M. The augmented
Bergman complex contains both the independence complex IM and the Bergman complex ∆M as
subcomplexes. In fact, ∆M contains the order complex of the poset of proper flats of M, which
is the cone over the Bergman complex with the cone point corresponding to the empty flat. It is
straightforward to check that ∆M is pure of dimension d´ 1.

Proposition 2.3. The Bergman complex and the augmented Bergman complex of M are both con-
nected in codimension 1.

Proof. The statement about the Bergman complex is a direct consequence of its shellability [Bjö92].
We prove the statement about the augmented Bergman complex using the statement about the
Bergman complex.

The claim is that, given any two facets of ∆M, one may travel from one facet to the other by
passing through faces of codimension at most 1. Since the Bergman complex of M is connected
in codimension 1, the subcomplex of ∆M consisting of faces of the form ∅ ď F is connected in
codimension 1. Thus it suffices to show that any facet of ∆M can be connected to a facet of the
form ∅ ď F through codimension 1 faces.

Let I ď F be a facet of ∆M. If I is nonempty, choose any element i of I , and consider the flag
of flats G obtained by adjoining the closure of Izi to F. The independent set Izi is compatible with
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the flag G, and the facet I ď F is adjacent to the facet Izi ď G. Repeating the procedure, we can
connect the given facet to a facet of the desired form through codimension 1 faces. �

Let RE be the vector space spanned by the standard basis vectors ei corresponding to the ele-
ments i P E. For an arbitrary subset S Ď E, we set

eS –
ÿ

iPS

ei.

For an element i P E, we write ρi for the ray generated by the vector ei in RE . For a subset S Ď E,
we write ρS for the ray generated by the vector ´eEzS in RE , and write ρ

S
for the ray generated

by the vector eS in RE{xeSy. Using these rays, we construct fan models of the Bergman complex
and the augmented Bergman complex as follows.

Definition 2.4. The Bergman fan ΠM of M is a simplicial fan in the quotient space RE{xeEy with
rays ρ

F
for nonempty proper flats F of M. The cones of ΠM are of the form

σF – coneteF uFPF “ conet´eEzF uFPF,

where F is a flag of nonempty proper flats of M.

The augmented Bergman fan ΠM of M is a simplicial fan in RE with rays ρi for elements i in E

and ρF for proper flats F of M. The cones of the augmented Bergman fan are of the form

σIďF – coneteiuiPI ` conet´eEzF uFPF,

where F is a flag of proper flats of M and I is an independent set of M compatible with F. We
write σI for the cone σIďF when F is the empty flag of flats of M.

Remark 2.5. If E is nonempty, then the Bergman fan ΠM is the star of the ray ρ∅ in the augmented
Bergman fan ΠM. If E is empty, then ΠM and ΠM both consist of a single 0-dimensional cone.

Let N be another loopless matroid on E. The matroid M is said to be a quotient of N if every flat
of M is a flat of N. The condition implies that every independent set of M is an independent set of
N [Kun86, Proposition 8.1.6]. Therefore, when M is a quotient of N, the augmented Bergman fan
of M is a subfan of the augmented Bergman fan of N, and the Bergman fan of M is a subfan of the
Bergman fan of N. In particular, we have inclusions of fans ΠM Ď ΠB and ΠM Ď ΠB, where B is
the Boolean matroid on E defined by the condition that E is an independent set of B.

Proposition 2.6. The Bergman fan and the augmented Bergman fan of B are each normal fans of
convex polytopes. In particular, there are strictly convex piecewise linear functions on ΠB and ΠB.

The above proposition can be used to show that the augmented Bergman fan and the Bergman
fan of M are, in fact, fans.
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∅ ď ∅ t1u ď ∅∅ ď tt2uu

t2u ď ∅

∅ ď tt1uu∅ ď t∅u

t1, 2u ď ∅t2u ď tt2uu

∅ ď t∅, t2uu

∅ ď t∅, t1uu

t1u ď tt1uu

FIGURE 1. The augmented Bergman fan of the rank 2 Boolean matroid on t1, 2u.

Proof. The statement for the Bergman fan is well-known: The Bergman fan of B is the normal fan
of the standard permutohedron in eKE Ď RE . See, for example, [AHK18, Section 2]. The statement
for the augmented Bergman fan ΠB follows from the fact that it is an iterated stellar subdivision
of the normal fan of the simplex

convtei, eEuiPE Ď RE .

More precisely, ΠB is isomorphic to the fan ΣP in [AHK18, Definition 2.3], where P is the order
filter of all subsets of E Y 0 containing the new element 0, via the linear isomorphism

RE ÝÑ REY0{xeE ` e0y, ej ÞÝÑ ej .

It is shown in [AHK18, Proposition 2.4] that ΣP is an iterated stellar subdivision of the normal fan
of the simplex.7 �

A direct inspection shows that ΠM is a unimodular fan; that is, the set of primitive ray generators
in any cone in ΠM is a subset of a basis of the free abelian group ZE . It follows that ΠM is also a
unimodular fan; that is, the set of primitive ray generators in any cone in ΠM is a subset of a basis
of the free abelian group ZE{xeEy.

7In fact, the augmented Bergman fan ΠB is the normal fan of the stellahedron in RE , the graph associahedron of the
star graph with |E| endpoints. We refer to [CD06] and [Dev09] for detailed discussions of graph associahedra and their
realizations.
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2.2. Stars. For any element i of E, we write clpiq for the closure of i in M, and write ιi for the
injective linear map

ιi : REzclpiq ÝÑ RE{xeiy, ej ÞÝÑ ej .

For any proper flat F of M, we write ιF for the linear isomorphism

ιF : REzF {xeEzF y ‘ RF ÝÑ RE{xeEzF y, ej ÞÝÑ ej .

For any nonempty proper flat F of M, we write ιF for the linear isomorphism

ιF : REzF {xeEzF y ‘ RF {xeF y ÝÑ RE{xeE , eEzF y, ej ÞÝÑ ej .

Let MF be the localization of M at F , and let MF be the contraction of M by F .

Proposition 2.7. The following are descriptions of the stars of the rays in ΠM and ΠM using the
three linear maps above.

(1) For any element i P E, the linear map ιi identifies the augmented Bergman fan of Mclpiq with
the star of the ray ρi in the augmented Bergman fan of M:

ΠMclpiq – starρiΠM.

(2) For any proper flat F of M, the linear map ιF identifies the product of the Bergman fan of MF

and the augmented Bergman fan of MF with the star of the ray ρF in the augmented Bergman
fan of M:

ΠMF
ˆΠMF – starρFΠM.

(3) For any nonempty proper flat F of M, the linear map ιF identifies the product of the Bergman
fan of MF and the Bergman fan of MF with the star of the ray ρ

F
in the Bergman fan of M:

ΠMF
ˆΠMF – starρ

F
ΠM.

Repeated applications of the first statement show that, for any independent set I of M, the star
of the cone σI in ΠM can be identified with the augmented Bergman fan of MclpIq, where clpIq is
the closure of I in M.

Proof. The first statement follows from the following facts: A flat of M contains i if and only if it
contains clpiq, and an independent set of M containing i does not contain any other element in
clpiq. The second and third statements follow directly from the definitions. �
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2.3. Weights. For any simplicial fan Σ, we write Σk for the set of k-dimensional cones in Σ. If τ is
a codimension 1 face of a cone σ, we write

eσ{τ – the primitive generator of the unique ray in σ that is not in τ .

A k-dimensional balanced weight on Σ is a Q-valued function ω on Σk that satisfies the balancing
condition: For every pk ´ 1q-dimensional cone τ in Σ,

ÿ

τĂσ

ωpσqeσ{τ is contained in the subspace spanned by τ ,

where the sum is over all k-dimensional cones σ containing τ . We write MWkpΣq for the group of
k-dimensional balanced weights on Σ.

Proposition 2.8. The Bergman fan and the augmented Bergman fan of M have the following
unique balancing property.

(1) A pd´ 1q-dimensional weight on ΠM is balanced if and only if it is constant.

(2) A d-dimensional weight on ΠM is balanced if and only if it is constant.

Proof. The first statement is [AHK18, Proposition 5.2]. We prove the second statement.

Let σIďF be a codimension 1 cone of ΠM, and let F be the smallest flat in F Y tEu. We analyze
the primitive generators of the rays in the star of the cone σIďF in ΠM. Let clpIq be the closure of I
in M. There are two cases.

When the closure of I is not F , the primitive ray generators in question are ´eEzclpIq and ei, for
elements i in F not in the closure of I . The primitive ray generators satisfy the relation

´eEzclpIq `
ÿ

iPF zclpIq

ei “ ´eEzF ,

which is zero modulo the span of σIďF. As the ei’s are independent modulo the span of σIďF, any
relation between the primitive generators must be a multiple of the displayed one.

When the closure of I is F , the fact that σIďF has codimension 1 implies that there is a unique
integer k with rkF ă k ă rk M such that F does not include a flat of rank k. Let F˝ be the unique
flat in F of rank k ´ 1, and let F ˝ be the unique flat in F Y tEu of rank k ` 1. The primitive ray
generators in question are ´eEzG for the flats G in G, where G is the set of flats of M covering F˝
and covered by F ˝. By the flat partition property of matroids [Oxl11, Section 1.4], the primitive
ray generators satisfy the relation

ÿ

GPG

´eEzG “ ´p`´ 1qeEzF˝ ´ eEzF ˝ ,
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which is zero modulo the span of σIďF. Since any proper subset of the primitive generators´eEzG
for G in G is independent modulo the span of σIďF, any relation between the primitive generators
must be a multiple of the displayed one.

The local analysis above shows that any constant d-dimensional weight on ΠM is balanced.
Since ΠM is connected in codimension 1 by Proposition 2.3, it also shows that any d-dimensional
balanced weight on ΠM must be constant. �

2.4. Chow rings. Any unimodular fan Σ in RE defines a graded commutative algebra CHpΣq,
which is the Chow ring of the associated smooth toric varietyXΣ over C with rational coefficients.
Equivalently, CHpΣq is the ring of continuous piecewise polynomial functions on Σ with rational
coefficients modulo the ideal generated by globally linear functions [Bri96, Section 3.1]. We write
CHkpΣq for the Chow group of codimension k cycles in XΣ, so that

CHpΣq “
à

k

CHkpΣq.

The group of k-dimensional balanced weights on Σ is related to CHkpΣq by the isomorphism

MWkpΣq ÝÑ HomQpCHkpΣq,Qq, ω ÞÝÑ pxσ ÞÝÑ ωpσqq,

where xσ is the class of the torus orbit closure in XΣ corresponding to a k-dimensional cone σ in
Σ. See [AHK18, Section 5] for a detailed discussion. For general facts on toric varieties and Chow
rings, and for any undefined terms, we refer to [CLS11] and [Ful98].

In Proposition 2.10 below, we show that the Chow ring of M coincides with CHpΠMq and that
the augmented Chow ring of M coincides with CHpΠMq.

Lemma 2.9. The following identities hold in the augmented Chow ring CHpMq.

(1) For any element i of E, we have y2
i “ 0.

(2) For any two bases I1 and I2 of a flat F of M, we have
ś

iPI1
yi “

ś

iPI2
yi.

(3) For any dependent set J of M, we have
ś

jPJ yj “ 0.

Proof. The first identity is a straightforward consequence of the relations in IM and JM:

y2
i “ yi

´

ÿ

iRF

xF

¯

“ 0.

For the second identity, we may assume that I1zI2 “ ti1u and I2zI1 “ ti2u, by the basis exchange
property of matroids. Since a flat of M contains I1 if and only if it contains I2, we have

´

ÿ

i1PG

xG

¯

ź

iPI1XI2

yi “
´

ÿ

I1ĎG

xG

¯

ź

iPI1XI2

yi “
´

ÿ

I2ĎG

xG

¯

ź

iPI1XI2

yi “
´

ÿ

i2PG

xG

¯

ź

iPI1XI2

yi.
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This immediately implies that we also have
´

ÿ

i1RG

xG

¯

ź

iPI1XI2

yi “
´

ÿ

i2RG

xG

¯

ź

iPI1XI2

yi,

which tells us that
ź

iPI1

yi “ yi1
ź

iPI1XI2

yi “
´

ÿ

i1RG

xG

¯

ź

iPI1XI2

yi “
´

ÿ

i2RG

xG

¯

ź

iPI1XI2

yi “ yi2
ź

iPI1XI2

yi “
ź

iPI2

yi.

For the third identity, we may suppose that J is a circuit, that is, a minimal dependent set.
Since M is a loopless matroid, we may choose distinct elements j1 and j2 from J . Note that the
independent sets Jzj1 and Jzj2 have the same closure because J is a circuit. Therefore, by the
second identity, we have

ź

jPJzj1

yj “
ź

jPJzj2

yj .

Combining the above with the first identity, we get
ź

jPJ

yj “ yj1
ź

jPJzj1

yj “ yj1
ź

jPJzj2

yj “ y2
j1

ź

jPJztj1,j2u

yj “ 0. �

By the second identity in Lemma 2.9, we may define

yF –
ź

iPI

yi in CHpMq

for any flat F of M and any basis I of F . The element yE will play the role of the fundamental
class for the augmented Chow ring of M.

Proposition 2.10. We have isomorphisms

CHpMq – CHpΠMq and CHpMq – CHpΠMq.

Proof. The first isomorphism is proved in [FY04, Theorem 3]; see also [AHK18, Section 5.3].

Let KM be the ideal of SM generated by the monomials
ś

jPJ yj for every dependent set J of
M. The ring of continuous piecewise polynomial functions on ΠM is isomorphic to the Stanley–
Reisner ring of ∆M, which is equal to

SM{pJM `KMq.

The ring CHpΠMq is obtained from this ring by killing the linear forms that generate the ideal IM.
In other words, we have a surjective homomorphism

CHpMq – SM{pIM ` JMq ÝÑ SM{pIM ` JM `KMq – CHpΠMq.

The fact that this is an isomorphism follows from the third part of Lemma 2.9. �
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Remark 2.11. By Proposition 2.10, the graded dimension of the Chow ring of the rank d Boolean
matroid CHpBq is given by the h-vector of the permutohedron in RE . In other words, we have

dim CHkpBq “ the Eulerian number
〈
d

k

〉
.

See [Pet15, Section 9.1] for more on permutohedra and Eulerian numbers.

If E is nonempty, we have the balanced weight

1 P MWd´1pΠMq – HomQpCHd´1pMq,Qq,

which can be used to define a degree map on the Chow ring of M. Similarly, for any E,

1 P MWdpΠMq – HomQpCHdpMq,Qq

can be used to define a degree map on the augmented Chow ring of M.

Definition 2.12. Consider the following degree maps for the Chow ring and the augmented Chow
ring of M.

(1) If E is nonempty, the degree map for CHpMq is the linear map

deg
M

: CHd´1pMq ÝÑ Q, xF ÞÝÑ 1,

where xF is any monomial corresponding to a maximal cone σF of ΠM.

(2) For any E, the degree map for CHpMq is the linear map

degM : CHdpMq ÝÑ Q, xIďF ÞÝÑ 1,

where xIďF is any monomial corresponding to a maximal cone σIďF of ΠM.

By Proposition 2.8, the degree maps are well-defined and are isomorphisms. It follows that, for
any two maximal cones σF1

and σF2
of the Bergman fan of M,

xF1 “ xF2 in CHd´1pMq.

Similarly, for any two maximal cones σI1ďF1 and σI2ďF2 of the augmented Bergman fan of M,

yF1xF1 “ yF2xF2 in CHdpMq,

where F1 is the closure of I1 in M and F2 is the closure of I2 in M. Proposition 2.10 shows that

CHkpMq “ 0 for k ě d and CHkpMq “ 0 for k ą d.

Remark 2.13. Let F be a field, and let V be a d-dimensional linear subspace of FE . We suppose that
the subspace V is not contained in FS Ď FE for any proper subset S of E. Let B be the Boolean
matroid on E, and let M be the loopless matroid on E defined by

S is an independent set of M ðñ the restriction to V of the projection FE Ñ FS is surjective.
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Let PpFEq be the projective space of lines in FE , and let TE be its open torus. For any proper flat
F of M, we write HF for the projective subspace

HF –
 

p P PpV q|pi “ 0 for all i P F
(

.

The wonderful variety XV is obtained from PpV q by first blowing up HF for every corank 1 flat F ,
then blowing up the strict transforms of HF for every corank 2 flat F , and so on. Equivalently,

XV “ the closure of PpV q X TE in the toric variety XM defined by ΠM

“ the closure of PpV q X TE in the toric variety XB defined by ΠB.

When E is nonempty, the inclusion XV Ď XM induces an isomorphism between their Chow
rings,8 and hence the Chow ring of XV is isomorphic to CHpMq [FY04, Corollary 2].

Let PpFE ‘ Fq be the projective completion of FE , and let TE be its open torus. The projective
completion PpV ‘Fq contains a copy of PpV q as the hyperplane at infinity, and it therefore contains
a copy of HF for every nonempty proper flat F . The augmented wonderful variety XV is obtained
from PpV ‘ F1q by first blowing up HF for every corank 1 flat F , then blowing up the strict
transforms of HF for every corank 2 flat F , and so on. Equivalently,

XV “ the closure of PpV ‘ Fq X TE in the toric variety XM defined by ΠM

“ the closure of PpV ‘ Fq X TE in the toric variety XB defined by ΠB.

The inclusion XV Ď XM induces an isomorphism between their Chow rings, and hence the Chow
ring of XV is isomorphic to CHpMq.9

2.5. The graded Möbius algebra. For any nonnegative integer k, we define a vector space

HkpMq –
à

FPLkpMq

QyF ,

where the direct sum is over the set LkpMq of rank k flats of M.

Definition 2.14. The graded Möbius algebra of M is the graded vector space

HpMq –
à

kě0

HkpMq.

The multiplication in HpMq is defined by the rule

yF1yF2 “

$

&

%

yF1_F2 if rkMpF1q ` rkMpF2q “ rkMpF1 _ F2q,

0 if rkMpF1q ` rkMpF2q ą rkMpF1 _ F2q,

where _ stands for the join operation in the lattice of flats LpMq of M.

8In general, the inclusion XV Ď XM does not induce an isomorphism between their singular cohomology rings.
9This can be proved using the interpretation of CHpMq in the last sentence of Remark 4.1.
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Our double use of the symbol yF is justified by the following proposition.

Proposition 2.15. The graded linear map

HpMq ÝÑ CHpMq, yF ÞÝÑ yF

is an injective homomorphism of graded algebras.

Proof. We first show that the linear map is injective. It is enough to check that the subset

tyF uFPLkpMq Ď CHkpMq

is linearly independent for every nonnegative integer k ă d. Suppose that
ÿ

FPLkpMq

cF yF “ 0 for some cF P Q.

For any given rank k flat G, we choose a saturated flag of proper flats G whose smallest member
is G and observe that

cGyGxG “
´

ÿ

FPLkpMq

cF yF

¯

xG “ 0.

Since the degree of yGxG is 1, this implies that cG must be zero.

We next check that the linear map is an algebra homomorphism using Lemma 2.9. Let I1 be a
basis of a flat F1, and let I2 be a basis of a flat F2. If the rank of F1 _ F2 is the sum of the ranks
of F1 and F2, then I1 and I2 are disjoint and their union is a basis of F1 _ F2. Therefore, in the
augmented Chow ring of M,

yF1yF2 “
ź

iPI1

yi
ź

iPI2

yi “
ź

iPI1YI2

yi “ yF1_F2 .

If the rank of F1 _ F2 is less than the sum of the ranks of F1 and F2, then either I1 and I2 intersect
or the union of I1 and I2 is dependent in M. Therefore, in the augmented Chow ring of M,

yF1yF2 “
ź

iPI1

yi
ź

iPI2

yi “ 0. �

Remark 2.16. Consider the torus TE , the toric variety XB, and the augmented wonderful variety
XV in Remark 2.13. The identity of TE uniquely extends to a toric map

pB : XB ÝÑ pP1qE .

Let pV be the restriction of pB to the augmented wonderful variety XV . If we identify the Chow
ring of XV with CHpMq as in Remark 2.13, the image of the pullback p˚V is the graded Möbius
algebra HpMq Ď CHpMq.
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2.6. Pullback and pushforward maps. Let Σ be a unimodular fan, and let σ be a k-dimensional
cone in Σ. The torus orbit closure in the smooth toric variety XΣ corresponding to σ can be iden-
tified with the toric variety of the fan starσΣ. Its class in the Chow ring of XΣ is the monomial
xσ, which is the product of the divisor classes xρ corresponding to the rays ρ in σ. The inclusion
ι of the torus orbit closure in XΣ defines the pullback ι˚ and the pushforward ι˚ between the Chow
rings, whose composition is multiplication by the monomial xσ:

CHpΣq
xσ

//

ι˚ &&

CHpΣq

CHpstarσΣq

ι˚

88

The pullback ι˚ is a surjective graded algebra homomorphism, while the pushforward ι˚ is a
degree k homomorphism of CHpΣq-modules.

We give an explicit description of the pullback ι˚ and the pushforward ι˚ when Σ is the aug-
mented Bergman fan ΠM and σ is the ray ρF of a proper flat F of M. Recall from Proposition 2.7
that the star of ρF admits the decomposition

starρFΠM – ΠMF
ˆΠMF .

Thus we may identify the Chow ring of the star of ρF with CHpMF q b CHpMF q. We denote the
pullback to the tensor product by ϕFM and the pushforward from the tensor product by ψFM:

CHpMq
xF

//

ϕFM ((

CHpMq

CHpMF q b CHpMF q

ψFM

66

To describe the pullback and the pushforward, we introduce Chow classes αM, αM, and β
M

. They
are defined as the sums

αM –
ÿ

G

xG P CH1pMq,

where the sum is over all proper flats G of M;

αM –
ÿ

iPG

xG P CH1pMq,

where the sum is over all nonempty proper flats G of M containing a given element i in E; and

β
M

–
ÿ

iRG

xG P CH1pMq,

where the sum is over all nonempty proper flatsG of M not containing a given element i inE. The
linear relations defining CHpMq show that αM and β

M
do not depend on the choice of i.
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The following two propositions are straightforward.

Proposition 2.17. The pullback ϕFM is the unique graded algebra homomorphism

CHpMq ÝÑ CHpMF q b CHpMF q

that satisfies the following properties:

‚ If G is a proper flat of M incomparable to F , then ϕFMpxGq “ 0.

‚ If G is a proper flat of M properly contained in F , then ϕFMpxGq “ 1b xG.

‚ If G is a proper flat of M properly containing F , then ϕFMpxGq “ xGzF b 1.

‚ If i is an element of F , then ϕFMpyiq “ 1b yi.

‚ If i is an element of EzF , then ϕFMpyiq “ 0.

The above five properties imply the following additional properties of ϕFM:

‚ The equality ϕFMpxF q “ ´1b αMF ´ β
MF
b 1 holds.

‚ The equality ϕFMpαMq “ αMF
b 1 holds.

Proposition 2.18. The pushforward ψFM is the unique CHpMq-module homomorphism10

ψFM : CHpMF q b CHpMF q ÝÑ CHpMq

that satisfies, for any collection S1 of proper flats of M strictly containing F and any collection S2

of proper flats of M strictly contained in F ,

ψFM

˜

ź

F 1PS1

xF 1zF b
ź

F 2PS2

xF 2

¸

“ xF
ź

F 1PS1

xF 1
ź

F 2PS2

xF 2 .

The composition ψFM ˝ ϕFM is multiplication by the element xF , and the composition ϕFM ˝ ψFM is
multiplication by the element ϕFMpxF q.

Proposition 2.18 shows that the pushforward ψFM commutes with the degree maps:

deg
MF
b degMF “ degM ˝ ψ

F
M.

Proposition 2.19. If CHpMF q and CHpMF q satisfy the Poincaré duality part of Theorem 1.3, then
ψFM is injective.

In other words, assuming Poincaré duality for the Chow rings, the graded CHpMq-module
CHpMF q b CHpMF qr´1s is isomorphic to the principal ideal of xF in CHpMq.11 In particular,

CHpMqr´1s – idealpx∅q Ď CHpMq.

10We make ψFM into a CHpMq-module homomorphism via the pullback ϕFM.
11For a graded vector space V , we write V rms for the graded vector space whose degree k piece is equal to V k`m.
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Proof. We will use the symbol degF to denote the degree function deg
MF
b degMF . For contradic-

tion, suppose that ψFMpηq “ 0 for η ‰ 0. By the two Poincaré duality statements in Theorem 1.3,
there is an element ν such that degF pνηq “ 1. By surjectivity of the pullback ϕFM, there is an ele-
ment µ such that ν “ ϕFMpµq. Since ψFM is a CHpMq-module homomorphism that commutes with
the degree maps, we have

1 “ degF pνηq “ degMpψ
F
Mpνηqq “ degMpψ

F
Mpϕ

F
Mpµqηqq “ degMpµψ

F
Mpηqq “ degMp0q “ 0,

which is a contradiction. �

We next give an explicit description of the pullback ι˚ and the pushforward ι˚ when Σ is the
Bergman fan ΠM and σ is the ray ρ

F
of a nonempty proper flat F of M. Recall from Proposition

2.7 that the star of ρ
F

admits the decomposition

starρ
F

ΠM – ΠMF
ˆΠMF .

Thus we may identify the Chow ring of the star of ρ
F

with CHpMF q b CHpMF q. We denote the
pullback to the tensor product by ϕF

M
and the pushforward from the tensor product by ψF

M
:

CHpMq
xF

//

ϕF
M

((

CHpMq

CHpMF q b CHpMF q

ψF
M

66

The following analogues of Propositions 2.17 and 2.18 are straightforward.

Proposition 2.20. The pullback ϕF
M

is the unique graded algebra homomorphism

CHpMq ÝÑ CHpMF q b CHpMF q

that satisfies the following properties:

‚ If G is a nonempty proper flat of M incomparable to F , then ϕF
M
pxGq “ 0.

‚ If G is a nonempty proper flat of M properly contained in F , then ϕF
M
pxGq “ 1b xG.

‚ If G is a nonempty proper flat of M properly containing F , then ϕF
M
pxGq “ xGzF b 1.

The above three properties imply the following additional properties of ϕF
M

:

‚ The equality ϕF
M
pxF q “ ´1b αMF ´ β

MF
b 1 holds.

‚ The equality ϕF
M
pαMq “ αMF

b 1 holds.

‚ The equality ϕF
M
pβ

M
q “ 1b β

MF holds.
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Proposition 2.21. The pushforward ψF
M

is the unique CHpMq-module homomorphism

CHpMF q b CHpMF q ÝÑ CHpMq

that satisfies, for any collection S1 of proper flats of M strictly containing F and any collection S2

of nonempty proper flats of M strictly contained in F ,

ψF
M

˜

ź

F 1PS1

xF 1zF b
ź

F 2PS2

xF 2

¸

“ xF
ź

F 1PS1

xF 1
ź

F 2PS2

xF 2 .

The composition ψF
M
˝ ϕF

M
is multiplication by the element xF , and the composition ϕF

M
˝ ψF

M
is

multiplication by the element ϕF
M
pxF q.

Proposition 2.21 shows that the pushforward ψF
M

commutes with the degree maps:

deg
MF
b deg

MF “ deg
M
˝ ψF

M
.

Proposition 2.22. If CHpMF q and CHpMF q satisfy the Poincaré duality part of Theorem 1.3, then
ψF

M
is injective.

In other words, assuming Poincaré duality for the Chow rings, the graded CHpMq-module
CHpMF q b CHpMF qr´1s is isomorphic to the principal ideal of xF in CHpMq.

Proof. The proof is essentially identical to that of Proposition 2.19. �

Last, we give an explicit description of the pullback ι˚ and the pushforward ι˚ when Σ is the
augmented Bergman fan ΠM and σ is the cone σI of a nonempty independent set I of M. By
Proposition 2.7, we have

starσIΠM – ΠMF
,

where F is the closure of I in M. Thus we may identify the Chow ring of the star of σI with
CHpMF q. We denote the corresponding pullback by ϕM

F and the pushforward by ψM
F :

CHpMq
yF

//

ϕM
F %%

CHpMq

CHpMF q

ψM
F

99

Note that the pullback and the pushforward only depend on F and not on I .

The following analogues of Propositions 2.17 and 2.18 are straightforward.

Proposition 2.23. The pullback ϕM
F is the unique graded algebra homomorphism

CHpMq ÝÑ CHpMF q

that satisfies the following properties:
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‚ If G is a proper flat of M that contains F , then ϕM
F pxGq “ xGzF .

‚ If G is a proper flat of M that does not contain F , then ϕM
F pxGq “ 0.

The above two properties imply the following additional properties of ϕM
F :

‚ If i is an element of F , then ϕM
F pyiq “ 0.

‚ If i is an element of EzF , then ϕM
F pyiq “ yi.

‚ The equality ϕM
F pαMq “ αMF

holds.

Proposition 2.24. The pushforward ψM
F is the unique CHpMq-module homomorphism

CHpMF q ÝÑ CHpMq

that satisfies, for any collection S1 of proper flats of M containing F ,

ψM
F

˜

ź

F 1PS1

xF 1zF

¸

“ yF
ź

F 1PS1

xF 1 .

The composition ψM
F ˝ ϕ

M
F is multiplication by the element yF , and the composition ϕM

F ˝ ψ
M
F is

multiplication by the element ϕM
F pyF q.

Proposition 2.24 shows that the pushforward ψM
F commutes with the degree maps:

degMF
“ degM ˝ ψ

M
F .

Proposition 2.25. If CHpMF q satisfies the Poincaré duality part of Theorem 1.3, then ψM
F is injec-

tive.

In other words, assuming Poincaré duality for the Chow rings, the graded CHpMq-module
CHpMF qr´rkMpF qs is isomorphic to the principal ideal of yF in CHpMq.

Proof. The proof is essentially identical to that of Proposition 2.19. �

The basic properties of the pullback and the pushforward maps can be used to describe the
fundamental classes of CHpMq and CHpMq in terms of αM and αM.

Proposition 2.26. The degree of αd´1
M is 1, and the degree of αdM is 1.

Proof. We prove the first statement by induction on d ě 1. Note that, for any nonempty proper flat
F of rank k, we have

xF α
d´k
M “ ψF

M

`

ϕF
M
pαd´kM q

˘

“ ψF
M

`

αd´kMF
b 1

˘

“ 0,
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since CHd´kpMF q “ 0. Therefore, for any proper flat a of rank 1 and any element i in a, we have

αd´1
M “

´

ÿ

iPF

xF

¯

αd´2
M “ xaα

d´2
M .

Now, using the induction hypothesis applied to the matroid Ma of rank d´ 1, we get

αd´1
M “ xaα

d´2
M “ ψa

M

`

ϕa
M
pαd´2

M q
˘

“ ψa
M

`

αd´2
Ma

b 1
˘

“ xF,

where F is any maximal flag of nonempty proper flats of M that starts from a.

For the second statement, note that, for any proper flat F of rank k,

xF α
d´k
M “ ψFM

`

ϕFMpα
d´k
M q

˘

“ ψFM
`

αd´kMF
b 1

˘

“ 0.

Using the first statement, we get the conclusion from the identity

αdM “

´

ÿ

F

xF

¯

αd´1
M “ x∅α

d´1
M “ ψ∅

M

`

ϕ∅
Mpα

d´1
M q

˘

“ ψ∅
M

`

αd´1
M

˘

. �

More generally, the degree of αd´kM βk
M

is the k-th coefficient of the reduced characteristic poly-
nomial of M [AHK18, Proposition 9.5].

Remark 2.27. In the setting of Remark 2.13, the element αM, viewed as an element of the Chow ring
of the augmented wonderful variety XV , is the class of the pullback of the hyperplane PpV q Ď
PpV ‘ Fq.

3. PROOFS OF THE SEMI-SMALL DECOMPOSITIONS AND THE POINCARÉ DUALITY THEOREMS

In this section, we prove Theorems 1.1 and 1.2 together with the two Poincaré duality statements
in Theorem 1.3. For an element i of E, we write πi and πi for the coordinate projections

πi : RE ÝÑ REzi and πi : RE{xeEy ÝÑ REzi{xeEziy.

Note that πipρiq “ 0 and πipρtiuq “ 0. In addition, πipρSq “ ρSzi and πipρSq “ ρ
Szi

for S Ď E.

Proposition 3.1. Let M be a loopless matroid on E, and let i be an element of E.

(1) The projection πi maps any cone of ΠM onto a cone of ΠMzi.

(2) The projection πi maps any cone of ΠM onto a cone of ΠMzi.

Recall that a linear map defines a morphism of fans Σ1 Ñ Σ2 if it maps any cone of Σ1 into a
cone of Σ2 [CLS11, Chapter 3]. Thus the above proposition is stronger than the statement that πi
and πi induce morphisms of fans.

Proof. The projection πi maps σIďF onto σIziďFzi, where Fzi is the flag of flats of Mzi obtained by
removing i from the members of F. Similarly, πi maps σF onto σFzi. �
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By Proposition 3.1, the projection πi defines a map from the toric variety XM of ΠM to the toric
variety XMzi of ΠMzi, and hence the pullback homomorphism CHpMziq Ñ CHpMq. Explicitly, the
pullback is the graded algebra homomorphism

θi “ θM
i : CHpMziq ÝÑ CHpMq, xF ÞÝÑ xF ` xFYi,

where a variable in the target is set to zero if its label is not a flat of M. Similarly, πi defines a
map from the toric variety XM of ΠM to the toric variety XMzi of ΠMzi, and hence an algebra
homomorphism

θi “ θM
i : CHpMziq ÝÑ CHpMq, xF ÞÝÑ xF ` xFYi,

where a variable in the target is set to zero if its label is not a flat of M.

Remark 3.2. We use the notations introduced in Remark 2.13. Let V zi be the image of V under the
i-th projection FE Ñ FEzi. We have the commutative diagrams of wonderful varieties and their
Chow rings

XB XV

XBzi XV zi,

pB
i

pV
i

CHpBq CHpMq

CHpBziq CHpMziq.

The map pV
i

is birational if and only if i is not a coloop of M. By Proposition 3.1, the fibers of pB
i

are at most one-dimensional, and hence the fibers of pV
i

are at most one-dimensional. It follows
that pV

i
is semi-small in the sense of Goresky–MacPherson when i is not a coloop of M.

Similarly, we have the diagrams of augmented wonderful varieties and their Chow rings

XB XV

XBzi XV zi,

pBi pVi

CHpBq CHpMq

CHpBziq CHpMziq.

The map pVi is birational if and only if i is not a coloop of M. By Proposition 3.1, the fibers of pB
i

are at most one-dimensional, and hence pVi is semi-small when i is not a coloop of M.

Numerically, the semi-smallness of pV
i

is reflected in the identity

dimxFYiCHk´1
piq “ dimxFYiCHd´k´2

piq .

Similarly, the semi-smallness of pVi is reflected in the identity12

dimxFYiCHk´1
piq “ dimxFYiCHd´k´1

piq .

12The displayed identities follow from Proposition 3.5 and the Poincaré duality parts of Theorem 1.3.
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For a detailed discussion of semi-small maps in the context of Hodge theory and the decomposi-
tion theorem, see [dCM02] and [dCM09].

The element i is said to be a coloop of M if the ranks of M and Mzi are not equal. We show that
the pullbacks θi and θi are compatible with the degree maps of M and Mzi.

Lemma 3.3. Suppose that Ezi is nonempty.

(1) If i is not a coloop of M, then θi commutes with the degree maps:

degMzi “ degM ˝ θi.

(2) If i is not a coloop of M, then θi commutes with the degree maps:

deg
Mzi

“ deg
M
˝ θi.

(3) If i is a coloop of M, we have

degMzi “ degM ˝ xEzi ˝ θi “ degM ˝ αM ˝ θi,

where the middle maps are multiplications by the elements xEzi and αM.

(4) If i is a coloop of M, we have

deg
Mzi

“ deg
M
˝ xEzi ˝ θi “ deg

M
˝ αM ˝ θi,

where the middle maps are multiplications by the elements xEzi and αM.

Proof. If i is not a coloop of M, we may choose a basis B of Mzi that is also a basis of M. We have

CHdpMziq “ spanpyBq and CHdpMq “ spanpyBq.

Since θipyjq “ yj for all j, the first identity follows. Similarly, by Proposition 2.26,

CHd´1pMziq “ spanpαd´1
Mzi q and CHd´1pMq “ spanpαd´1

M q.

Since θipαMziq “ αM when i is not a coloop, the second identity follows.

Suppose now that i is a coloop of M. In this case, Mzi “ MEzi, and hence

ϕ
Ezi
M ˝ θi “ identity of CHpMziq and ϕEzi

M
˝ θi “ identity of CHpMziq.

Using the compatibility of the pushforward ψEziM with the degree maps, we have

degMzi “ degM ˝ ψ
Ezi
M “ degM ˝ ψ

Ezi
M ˝ ϕ

Ezi
M ˝ θi “ degM ˝ xEzi ˝ θi.

Since θipαMziq “ αM ´ xEzi when i is a coloop of M, the above implies

degMzi “ degM ˝ xEzi ˝ θi “ degM ˝
`

αM ´ θipαMziq
˘

˝ θi “ degM ˝ αM ˝ θi,

The identities for deg
Mzi

can be obtained in a similar way. �
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Proposition 3.4. If CHpMziq satisfies the Poincaré duality part of Theorem 1.3, then θi is injective.
Also, if CHpMziq satisfies the Poincaré duality part of Theorem 1.3, then θi is injective.

Proof. The proof is essentially identical to that of Proposition 2.19. �

For a flat F in Si, we write θFYii for the pullback map between the augmented Chow rings
obtained from the deletion of i from the localization MFYi:

θFYii : CHpMF q Ñ CHpMFYiq.

Similarly, for a flat F in Si, we write θFYii for the pullback map between the Chow rings obtained
from the deletion of i from the localization MFYi:

θFYii : CHpMF q Ñ CHpMFYiq.

Note that i is a coloop of MFYi in these cases.

Proposition 3.5. The summands appearing in Theorems 1.1 and 1.2 can be described as follows.

(1) If F P Si, then xFYiCHpiq “ ψFYiM

`

CHpMFYiq b θ
FYi
i CHpMF q

˘

.

(2) If F P Si, then xFYiCHpiq “ ψFYi
M

`

CHpMFYiq b θ
FYi
i CHpMF q

˘

.

(3) If i is a coloop of M, then xEzi CHpiq “ ψ
Ezi
M CHpMziq and xEziCHpiq “ ψEzi

M
CHpMziq.

It follows, assuming Poincaré duality for the Chow rings,13 that

xFYiCHpiq – CHpMFYiq b CHpMF qr´1s and xFYiCHpiq – CHpMFYiq b CHpMF qr´1s.

Therefore, again assuming Poincaré duality for the Chow rings, we have

dimxFYiCHk´1
piq “ dimxFYiCHd´k´2

piq and dimxFYiCHk´1
piq “ dimxFYiCHd´k´1

piq .

Proof. We prove the first statement. The proof of the second statement is essentially identical. The
third statement is a straightforward consequence of the fact that ϕEziM ˝ θi and ϕ

Ezi
M ˝ θi are the

identity maps when i is a coloop.

Let F be a flat in Si. It is enough to show that

ϕFYiM

`

CHpiq
˘

“ CHpMFYiq b θ
FYi
i CHpMF q,

13We need Poincaré duality for CHpMF
q, CHpMF

q, CHpMFYi
q, CHpMFYi

q, and CHpMFYiq.
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since the result will then follow by applying ψFYiM . The projection πi maps the ray ρFYi to the ray
ρF , and hence πi defines morphisms of fans

starρFYiΠM ΠMFYi
ˆΠMFYi ΠpM{iqF ˆΠMFYi

starρFΠMzi ΠpMziqF ˆΠpMziqF ΠpMziqF ˆΠMF ,

π1i

ιFYi

π2i π3i

ιF

where ιFYi and ιF are the isomorphisms in Proposition 2.7. The main point is that the matroid
pM{iqF is a quotient of pMziqF . In other words, we have the inclusion of Bergman fans

ΠpM{iqF Ď ΠpMziqF .

Therefore, the morphism π3i admits the factorization

ΠpM{iqF ˆΠMFYi ΠpM{iqF ˆΠMF ΠpMziqF ˆΠMF ,

where the second map induces a surjective pullback map q between the Chow rings. By the equal-
ity pM{iqF “ MFYi, we have the commutative diagram of pullback maps between the Chow rings

CHpMziq CHpMq

CHppMziqF q b CHppMziqF q CHpMFYiq b CHpMF q CHpMFYiq b CHpMFYiq.

θi

ϕF
Mzi ϕFYiM

q 1bθFYii

The conclusion follows from the surjectivity of the pullback maps ϕFMzi and q. �

Remark 3.6. Since i is a coloop in MFYi when F P Si or F P Si, Proposition 3.5 implies that

xFYiCHd´1
piq “ 0 for F P Si and xFYiCHd´2

piq “ 0 for F P Si.

Proposition 3.7. The Poincaré pairing on the summands appearing in Theorems 1.1 and 1.2 can
be described as follows.

(1) If F P Si, then for any µ1, µ2 P CHpMFYiq b CHpMF q of complementary degrees,

degM

`

ψFYiM

`

1b θFYii pµ1q
˘

¨ ψFYiM

`

1b θFYii pµ2q
˘˘

“ ´deg
MFYi

b degMF pµ1µ2q.

(2) If F P Si, then for any ν1, ν2 P CHpMFYiq b CHpMF q of complementary degrees,

deg
M

`

ψFYi
M

`

1b θFYii pν1q
˘

¨ ψFYi
M

`

1b θFYii pν2q
˘˘

“ ´deg
MFYi

b deg
MF pν1ν2q.
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It follows, assuming Poincaré duality for the Chow rings,14 that the restriction of the Poincaré
pairing of CHpMq to the subspace xFYi CHpiq is non-degenerate, and the restriction of the Poincaré
pairing of CHpMq to the subspace xFYiCHpiq is non-degenerate.

Proof. We prove the first identity. The second identity can be proved in the same way.

Since the pushforward ψFYiM is a CHpMq-module homomorphism, the left-hand side is

degM

`

ψFYiM

`

ϕFYiM ψFYiM

`

1b θFYii pµ1q
˘

¨
`

1b θFYii pµ2q
˘˘˘

.

The pushforward commutes with the degree maps, so the above is equal to

deg
MFYi

b degMFYi

`

ϕFYiM ψFYiM

`

1b θFYii pµ1q
˘

¨
`

1b θFYii pµ2q
˘˘

.

Using that the composition ϕFYiM ψFYiM is multiplication by ϕFYiM pxFYiq, we get

´deg
MFYi

b degMFYi

``

1b αMFYi ` β
MFYi

b 1
˘

¨
`

1b θFYii pµ1q
˘

¨
`

1b θFYii pµ2q
˘˘

.

Since i is a coloop of MFYi, the expression simplifies to

´deg
MFYi

b degMFYi

``

1b αMFYi

˘

¨
`

1b θFYii pµ1q
˘

¨
`

1b θFYii pµ2q
˘˘

.

Now the third part of Lemma 3.3 shows that the above quantity is the right-hand side of the
formula in statement (1). �

Lemma 3.8. If flats F1, F2 are in Si and F1 is a proper subset of F2, then

xF1Yi xF2Yi P xF1YiCHpiq.

Similarly, if F1, F2 are in Si and F1 is a proper subset of F2, then

xF1Yi xF2Yi P xF1YiCHpiq.

Proof. Since F1 Y i is not comparable to F2, we have

xF1Yi xF2Yi “ xF1YipxF2 ` xF2Yiq “ xF1YiθipxF2q.

The second part follows from the same argument. �

Proof of Theorem 1.1, Theorem 1.2, and parts (1) and (4) of Theorem 1.3. All the summands in the pro-
posed decompositions are cyclic, and therefore indecomposable in the category of graded mod-
ules.15 We prove the decompositions by induction on the cardinality of the ground set E. If E is
empty, then Theorem 1.1, Theorem 1.2, and part (1) of Theorem 1.3 are vacuous, while part (4) of
Theorem 1.3 is trivial. Furthermore, all of these results are trivial when E is a singleton. Thus,

14We need Poincaré duality for CHpMF
q, CHpMF

q, CHpMFYi
q, CHpMFYi

q, and CHpMFYiq.
15By [CF82, Corollary 2] or [GG82, Theorem 3.2], the indecomposability of the summands in the category of graded

modules implies the indecomposability of the summands in the category of modules.
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we may assume that i is an element of E, that Ezi is nonempty, and that all the results hold for
loopless matroids whose ground set is a proper subset of E.

First we assume that i is not a coloop. Let us show that the terms in the right-hand side of
the decomposition (D1) are orthogonal. Multiplying CHpiq and xFYiCHpiq lands in xFYiCHpiq, and
this ideal vanishes in degree d by Remark 3.6, so they are orthogonal. On the other hand, the
product of xF1YiCHpiq and xF2YiCHpiq vanishes if F1, F2 P Si are not comparable, while if F1 ă F2

or F2 ă F1, the product is contained in xF1YiCHpiq or xF2YiCHpiq respectively, by Lemma 3.8. So
these terms are also orthogonal.

It follows from the induction hypothesis and Lemma 3.3 that the restriction of the Poincaré pair-
ing of CHpMq to CHpiq is non-degenerate. By Proposition 3.5, Proposition 3.7, and the induction
hypothesis, the restriction of the Poincaré pairing of CHpMq to any other summand xFYiCHpiq is
also non-degenerate. Therefore, we can conclude that the sum on the right-hand side of (D1) is a
direct sum with a non-degenerate Poincaré pairing.

To complete the proof of the decomposition (D1) and the Poincaré duality theorem for CHpMq,
we must show that the direct sum

CHpiq ‘
à

FPSi

xFYiCHpiq

is equal to all of CHpMq. This is obvious in degree 0. To see that it holds in degree 1, it is enough to
check that xG is contained in the direct sum for any proper flatG of M. IfGzi is a not flat of M, then
xG “ θipxGziq. If Gzi is a flat of M, then either Gzi P Si or G P Si. In the first case, xG is an element
of the summand indexed by Gzi. In the second case, xG “ θipxGq ´ xGYi P CHpiq ` xGYiCHpiq.

Since our direct sum is a sum of CHpMziq-modules and it includes the degree 0 and 1 parts of
CHpMq, it will suffice to show that CHpMq is generated in degrees 0 and 1 as a graded CHpMziq-
module. In other words, we need to show that

CH1
piq ¨ CHkpMq “ CHk`1pMq for any k ě 1.

We first prove the equality when k “ 1. Since we have proved that the decomposition (D1)
holds in degree 1, we know that

CH2pMq “ CH1pMq ¨ CH1pMq “

˜

CH1
piq ‘

à

FPSi

QxFYi

¸

¨

˜

CH1
piq ‘

à

FPSi

QxFYi

¸

.

Using Lemma 3.8, we may reduce the problem to showing that

x2
FYi P CH1

piq ¨ CH1pMq for any F P Si.
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We can rewrite the relation 0 “ xF yi in the augmented Chow ring of M as

0 “ pθipxF q ´ xFYiq
ÿ

iRG

xG

“ θipxF q
´

ÿ

iRG

xG

¯

´ xFYi

´

ÿ

GďF

xG

¯

,

“ θipxF q
´

ÿ

iRG

xG

¯

´ pθipxF q ´ xF q
´

ÿ

GăF

xG

¯

´ xFYixF

“ θipxF q
´

ÿ

iRG

xG ´
ÿ

GăF

xG

¯

` xF

´

ÿ

GăF

xG

¯

´ xFYiθipxF q ` x
2
FYi,

thus reducing the problem to showing that

xFxG P CH1
piq ¨ CH1pMq for any G ă F P Si.

The collection Si is downward closed, meaning that if G ă F P Si, then G P Si; therefore,

xFxG “ pθipxF q ´ xFYiqpθipxGq ´ xGYiq.

Lemma 3.8 tells us that xFYixGYi P CH1
piq ¨ CH1pMq, thus so is xFxG.

We next prove the equality when k ě 2. In this case, we use the result for k “ 1 along with the
fact that the algebra CHpMq is generated in degree 1 to conclude that

CH1
piq ¨ CHkpMq “ CH1

piq ¨ CH1pMq ¨ CHk´1pMq “ CH2pMq ¨ CHk´1pMq “ CHk`1pMq.

This completes the proof of the decomposition (D1) and the Poincaré duality theorem for CHpMq

when there is an element i that is not a coloop of M.

The proof when i is a coloop is almost the same; we explain the places where something differ-
ent must be said. The orthogonality of xEziCHpiq and xFYiCHpiq for F P Si follows because Ezi
and F Y i are incomparable. To show that the right-hand side of (D2) spans CHpMq, one extra
statement we need to check is that

x2
Ezi P CH1

piq ¨ CH1pMq.

Since i is a coloop, Si is the set of all flats properly contained in Ezi, and we have

0 “ xEziyi “
ÿ

iRF

xFxEzi “ x2
Ezi `

ÿ

FPSi

xEzixF “ x2
Ezi `

ÿ

FPSi

xEziθipxF q,

where the last equality follows because Ezi and F Y i are not comparable. Thus

x2
Ezi “ ´

ÿ

FPSi

xEziθipxF q P CH1
piq ¨ CH1pMq.

By the induction hypothesis, we know CHpMziq satisfies the Poincaré duality theorem. By the
coloop case of Lemma 3.3, the Poincaré pairing on CHpMq restricts to a perfect pairing between
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CHpiq and xEziCHpiq. Since CHpiq is a subring of CHpMq and is zero in degree d, the restriction
of the Poincaré pairing on CHpMq to CHpiq is zero. Therefore, the subspaces CHpiq and xEziCHpiq
intersect trivially, and the restriction of the Poincaré pairing on CHpMq to CHpiq ‘ xEziCHpiq is
non-degenerate. This completes the proof of the theorems about CHpMqwhen i is a coloop.

We observe that the surjectivity of the pullback ϕ∅
M gives the equality

CH1
piq ¨ CHkpMq “ CHk`1pMq for any k ě 1.

The proof of the theorems about CHpMq then follows by an argument identical to the one used for
CHpMq. �

4. PROOFS OF THE HARD LEFSCHETZ THEOREMS AND THE HODGE–RIEMANN RELATIONS

In this section, we prove Theorem 1.3. Parts (1) and (4) have already been proved in the previous
section. We will first prove parts (2) and (3) by induction on the cardinality ofE. The proof of parts
(5) and (6) is nearly identical to the proof of parts (2) and (3), with the added nuance that we use
parts (2) and (3) for the matroid M in the proof of parts (5) and (6) for the matroid M.

For any fan Σ, we will say that Σ satisfies the hard Lefschetz theorem or the Hodge–Riemann
relations with respect to some piecewise linear function on Σ if the ring CHpΣq satisfies the hard
Lefschetz theorem or the Hodge–Riemann relations with respect to the corresponding element of
CH1pΣq.

Proof of Theorem 1.3, parts (2) and (3). The statements are trivial when the cardinality of E is 0 or 1,
so we will assume throughout the proof that the cardinality of E is at least 2.

Let B be the Boolean matroid on E. By the induction hypothesis, we know that for every
nonempty proper flat F of M, the fans ΠMF

and ΠMF satisfy the hard Lefschetz theorem and the
Hodge–Riemann relations with respect to any strictly convex piecewise linear functions on ΠBF

and ΠBF , respectively. By [AHK18, Proposition 7.7], this implies that for every nonempty proper
flat F of M, the product ΠMF

ˆΠMF satisfies the hard Lefschetz theorem and the Hodge–Riemann
relations with respect to any strictly convex piecewise linear function on ΠBF

ˆ ΠBF . In other
words, ΠM satisfies the local Hodge–Riemann relations [AHK18, Definition 7.14]:

The star of any ray in ΠM satisfies the Hodge–Riemann relations.

This in turn implies that ΠM satisfies the hard Lefschetz theorem with respect to any strictly convex
piecewise linear function on ΠB [AHK18, Proposition 7.15]. It remains to prove only that ΠM

satisfies the Hodge–Riemann relations with respect to any strictly convex piecewise linear function
on ΠB.
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Let ` be a piecewise linear function on ΠB, and let HRk
` pMq be the Hodge–Riemann form

HRk
` pMq : CHkpMq ˆ CHkpMq ÝÑ Q, pη1, η2q ÞÝÑ p´1qkdeg

M
p`d´2k´1η1η2q.

By [AHK18, Proposition 7.6], the fan ΠM satisfies the Hodge–Riemann relations with respect to
` if and only if, for all k ă d

2 , the Hodge–Riemann form HRk
` pMq is non-degenerate and has the

signature
k
ÿ

j“0

p´1qk´j
´

dim CHjpMq ´ dim CHj´1pMq
¯

.

Since ΠM satisfies the hard Lefschetz theorem with respect to any strictly convex piecewise linear
function on ΠB and signature is a locally constant function on the space of nonsingular forms, the
following statements are equivalent:

(i) The fan ΠM satisfies the Hodge–Riemann relations with respect to any strictly convex piece-
wise linear function on ΠB.

(ii) The fan ΠM satisfies the Hodge–Riemann relations with respect to some strictly convex piece-
wise linear function on ΠB.

Furthermore, since satisfying the Hodge–Riemann relations with respect to a given piecewise lin-
ear function is an open condition on the function, statement (ii) is equivalent to the following:

(iii) The fan ΠM satisfies the Hodge–Riemann relations with respect to some convex piecewise
linear function on ΠB.

We show that statement (iii) holds using the semi-small decomposition in Theorem 1.1.

If M is the Boolean matroid B, then CHpMq can be identified with the cohomology ring of the
smooth complex projective toric variety XΠB

. Therefore, in this case, Theorem 1.3 is a special
case of the usual hard Lefschetz theorem and the Hodge–Riemann relations for smooth complex
projective varieties.16

If M is not the Boolean matroid B, choose an element i that is not a coloop in M, and consider
the morphism of fans

πi : ΠM ÝÑ ΠMzi.

By induction, we know that ΠMzi satisfies the Hodge–Riemann relations with respect to any
strictly convex piecewise linear function ` on ΠBzi. We will show that ΠM satisfies the Hodge–
Riemann relations with respect to the pullback `i – ` ˝ πi, which is a piecewise linear function on
ΠB that is convex but not necessarily strictly convex.

16It is not difficult to directly prove the hard Lefschetz theorem and the Hodge–Riemann relations for CHpBq using
the coloop case of Theorem 1.1. Alternatively, we may apply McMullen’s hard Lefschetz theorem and Hodge–Riemann
relations for polytope algebras [McM93] to the standard permutohedron in RE .
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By Theorem 1.1, we have the orthogonal decomposition of CHpMq into CHpMziq-modules

CHpMq “ CHpiq ‘
à

FPSi

xFYiCHpiq.

By orthogonality, it is enough to show that each summand of CHpMq satisfies the Hodge–Riemann
relations with respect to `i:

(iv) For every nonnegative integer k ă d
2 , the bilinear form

CHk
piq ˆ CHk

piq ÝÑ Q, pη1, η2q ÞÝÑ p´1qkdeg
M
p`d´2k´1
i η1η2q

is positive definite on the kernel of multiplication by `d´2k
i .

(v) For every nonnegative integer k ă d
2 , the bilinear form

xFYiCHk´1
piq ˆ xFYiCHk´1

piq ÝÑ Q, pη1, η2q ÞÝÑ p´1qkdeg
M
p`d´2k´1
i η1η2q

is positive definite on the kernel of multiplication by `d´2k
i .

By Proposition 3.4, the homomorphism θi restricts to an isomorphism of CHpMziq-modules

CHpMziq – CHpiq.

Thus, statement (iv) follows from Lemma 3.3 and the induction hypothesis applied to Mzi. By
Propositions 2.22, 3.4, and 3.5, the homomorphisms θFYii and ψFYi

M
give a CHpMziq-module iso-

morphism

CHpMFYiq b CHpMF q – CHpMFYiq b θ
FYi
i CHpMF q – xFYiCHpiqr1s.

Note that the pullback of a strictly convex piecewise linear function on ΠBzi to the star

ΠpBziqF ˆΠpBziqF “ ΠBFYi
ˆΠBF

is the class of a strictly convex piecewise linear function. Therefore, statement (v) follows from
Proposition 3.7 and the induction applied to MFYi and MF . �

Proof of Theorem 1.3, parts (5) and (6). This proof is nearly identical to the proof of parts (2) and (3).
In that argument, we used the fact that rays of ΠM are indexed by nonempty proper flats of M and
the star of the ray ρ

F
is isomorphic to ΠMF

ˆΠMF , which we can show satisfies the hard Lefschetz
theorem and the Hodge–Riemann relations using the induction hypothesis. When dealing instead
with the augmented Bergman fan ΠM, we have rays indexed by elements of E and rays indexed
by proper flats of M, with

starρiΠM – ΠMclpiq and starρFΠM – ΠMF
ˆΠMF .

Thus the stars of ρi and ρF for nonempty F can be shown to satisfy the hard Lefschetz theorem
and the Hodge–Riemann relations using the induction hypothesis. However, the star of ρ∅ is
isomorphic to ΠM, so we need to use parts (2) and (3) of Theorem 1.3 for M itself. �
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Remark 4.1. It is possible to deduce Poincaré duality, the hard Lefschetz theorem, and the Hodge–
Riemann relations for CHpMq using [AHK18, Theorem 6.19 and Theorem 8.8], where the three
properties are proved for generalized Bergman fans ΣN,P in [AHK18, Definition 3.2]. We sketch
the argument here, leaving details to the interested readers. Consider the direct sum M ‘ 0 of M

and the rank 1 matroid on the singleton t0u and the order filter PpMq of all proper flats of M ‘ 0

that contain 0. The symbols B ‘ 0 and PpBq are defined in the same way for the Boolean matroid
B on E. It is straightforward to check that the linear isomorphism

RE ÝÑ REY0{xeE ` e0y, ej ÞÝÑ ej

identifies the complete fan ΠB with the complete fan ΣB‘0,PpBq, and the augmented Bergman fan
ΠM with a subfan of ΣM‘0,PpMq. The third identity in Lemma 2.9 shows that the inclusion of
the augmented Bergman fan ΠM into the generalized Bergman fan ΣM‘0,PpMq induces an isomor-
phism between their Chow rings.

5. PROOF OF THEOREM 1.4

In this section, we prove the decomposition (D3) by induction on the cardinality of E. The
decomposition (D3) can be proved using the same argument. The results are trivial when E has at
most one element. Thus, we may assume that i is an element of E, that Ezi is nonempty, and that
all the results hold for loopless matroids whose ground set is a proper subset of E.

We first prove that the summands appearing in the right-hand side of (D3) are orthogonal to
each other.

Lemma 5.1. Let F and G be distinct nonempty proper flats of M.

(1) The spaces ψF
M

CHpMF q b JαpM
F q and HαpMq are orthogonal in CHpMq.

(2) The spaces ψF
M

CHpMF q b JαpM
F q and ψG

M
CHpMGq b JαpM

Gq are orthogonal in CHpMq.

Proof. The fifth bullet point in Proposition 2.20, together with the fact that ψF
M

is a CHpMq-module
homomorphism via ϕF

M
, implies that every summand in the right-hand side of (D3) is an HαpMq-

submodule. Thus the first orthogonality follows from the vanishing of ψF
M

CHpMF q b JαpM
F q in

degree d´ 1.

For the second orthogonality, we may suppose that F is a proper subset of G. Since ψG
M

is a
CHpMq-module homomorphism commuting with the degree maps, it is enough to show that

ϕG
M
ψF

M
CHpMF q b JαpM

F q and CHpMGq b JαpM
Gq are orthogonal in CHpMGq b CHpMGq.
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For this, we use the commutative diagram of pullback and pushforward maps

CHpMF q b CHpMF q
ψF
M

//

ϕ
GzF
MF

b 1
��

CHpMq

ϕG
M
��

CHpMGq b CHpMG
F q b CHpMF q

1 b ψF
MG

// CHpMGq b CHpMGq,

which further reduces to the assertion that

ψF
MGCHpMG

F q b JαpM
F q and JαpM

Gq are orthogonal in CHpMGq.

Since JαpM
Gq Ď HαpM

Gq, the above follows from the first orthogonality for MG. �

We next show that the restriction of the Poincaré pairing of CHpMq to each summand appearing
in the right-hand side of (D3) is non-degenerate.

Lemma 5.2. Let F be a nonempty proper flat of M, and let k “ rkMpF q.

(1) The restriction of the Poincaré pairing of CHpMq to HαpMq is non-degenerate.

(2) The restriction of the Poincaré pairing of CHpMq to ψF
M

CHpMF q b JαpM
F q is non-degenerate.

Proof. The first statement follows from Proposition 2.26. We prove the second statement.

Since the Poincaré pairing of CHpMF q is non-degenerate, it is enough to show that the restriction
of the Poincaré pairing satisfies

deg
M

`

ψF
M
pµ1 b ν1q ¨ ψ

F
M
pµ2 b ν2q

˘

“ ´deg
MF
pµ1µ2q deg

MF pαMF ν1ν2q.

The proof of the identity is nearly identical to that of Proposition 3.7. The left-hand side is

deg
M

`

ψF
M

`

ϕF
M
ψF

M
pµ1 b ν1q ¨ pµ2 b ν2q

˘˘

“ deg
MF
b deg

MF

`

ϕF
M
ψF

M
pµ1 b ν1q ¨ pµ2 b ν2q

˘

because ψF
M

is a CHpMq-module homomorphism commuting with the degree maps. Since the
composition ϕF

M
ψF

M
is multiplication by ϕF

M
pxF q, the above becomes

´deg
MF
b deg

MF

`

p1b αMF ` β
MF
b 1q ¨ pµ1 b ν1q ¨ pµ2 b ν2q

˘

.

The vanishing of JαpM
F q in degree k ´ 1 further simplifies the above to the desired expression

´deg
MF
b deg

MF

`

p1b αMF q ¨ pµ1 b ν1q ¨ pµ2 b ν2q
˘

“ ´deg
MF
pµ1µ2q deg

MF pαMF ν1ν2q. �

To complete the proof, we only need to show that the graded vector spaces on both sides of (D3)
have the same dimension, which is the next proposition.
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Proposition 5.3. As graded vector spaces, there exists an isomorphism

CHpMq – HαpMq ‘
à

FPCpMq

CHpMF q b JαpM
F qr´1s, (D13)

where the sum is over the set CpMq of proper flats of M with rank at least two.

Proof. We prove the proposition using induction on the cardinality of E. Suppose the proposition
holds for any matroid whose ground set is a proper subset of E. Suppose that there exists an
element i P E that is not a coloop. Then the decomposition (D1) implies

CHpMq – CHpMziq ‘
à

GPSipMq

CHpMGYiq b CHpMGqr´1s,

since the maps θi, θ
GYi
i , and ψGYi

M
are injective via the Poincaré duality part of Theorem 1.3. By

applying the induction hypothesis to the matroids Mzi and MG, we see that the left-hand side of
(D13) is isomorphic to the graded vector space

HαpMziq ‘
à

GPCpMziq

CH
`

pMziqG
˘

b Jα
`

pMziqG
˘

r´1s

‘
à

GPSipMq

CHpMGYiq bHαpM
Gqr´1s

‘
à

GPSipMq

à

FPCpMGq

CHpMGYiq b CHpMG
F q b JαpM

F qr´2s.

Since i is not a coloop, we may replace HαpMziq by HαpMq.

Now, we further decompose the right-hand side of (D13) to match the displayed expression. For
this, we split the index set CpMq into three groups:

(1) F P CpMq, i P F, F zi P SipMq,

(2) F P CpMq, i P F, F zi R SipMq, and

(3) F P CpMq, i R F .

Suppose F belongs to the first group. In this case, we have JαpM
F q – HαpM

F ziq as graded
vector spaces. Therefore, we have

à

FPCpMq
iPF,F ziPSipMq

CHpMF q b JαpM
F qr´1s –

à

GPSipMq

CHpMGYiq bHαpM
Gqr´1s.

Suppose F belongs to the second group. In this case, MF “ pMziqF zi, and the matroids MF and
pMziqF zi have the same rank. Therefore, we have

à

FPCpMq
iPF,F ziRSipMq

CHpMF q b JαpM
F qr´1s –

à

GPCpMziqzCpMq

CH
`

pMziqG
˘

b Jα
`

pMziqG
˘

r´1s.
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Suppose F belongs to the third group. In this case, we apply (D1) to MF and get
à

FPCpMq,iRF

CHpMF q b JαpM
F qr´1s

–
à

FPCpMq,iRF

´

CH
`

MF zi
˘

‘
à

GPSipMF q

CHpMGYiq b CHpMG
F qr´1s

¯

b JαpM
F qr´1s

–
à

FPCpMq,iRF

CH
`

MF zi
˘

b JαpM
F qr´1s ‘

à

GPSipMq

FPCpMGq

CHpMGYiq b CHpMG
F q b JαpM

F qr´2s

–
à

GPCpMziqXCpMq

CH
`

pMziqG
˘

b Jα
`

pMziqG
˘

r´1s ‘
à

GPSipMq

FPCpMGq

CHpMGYiq b CHpMG
F q b JαpM

F qr´2s.

The decomposition (D13) follows.

Suppose now that every element of E is a coloop of M; that is, M is a Boolean matroid. We fix
an element i P E. The decomposition (D2) and the Poincaré duality part of Theorem 1.3 imply

CHpMq – CHpMziq ‘ CHpMziqr´1s ‘
à

GPSipMq

CHpMGYiq b CHpMGqr´1s.

The assumption that i is a coloop implies that SipMq X CpMq “ CpMziq. The induction hypothesis
applies to the matroids Mzi and MG, and hence the left-hand side of (D13) is isomorphic to

HαpMziq ‘
à

GPCpMziq

CH
`

pMziqG
˘

b Jα
`

pMziqG
˘

r´1s

‘HαpMziqr´1s ‘
à

GPCpMziq

CH
`

pMziqG
˘

b Jα
`

pMziqG
˘

r´2s

‘
à

GPSipMq

CHpMGYiq b

´

HαpM
Gq ‘

à

FPCpMGq

CHpMG
F q b JαpM

F qr´1s
¯

r´1s.

Now, we further decompose the right-hand side of (D13) to match the displayed expression. For
this, we split the index set CpMq into three groups:

(1) F P CpMq, i P F ,

(2) F P CpMq, F “ Ezi, and

(3) F P CpMq, F P SipMq.

If F belongs to the first group, then JαpM
F q – HαpM

F ziq, and hence
à

FPCpMq,iPF

CHpMF q b JαpM
F qr´1s –

à

GPSipMq

CHpMGYiq bHαpM
Gqr´1s.

If F is the flat Ezi, we have

HαpMq ‘ CHpMEziq b JαpM
Eziqr´1s – HαpMziq ‘HαpMziqr´1s.
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If F belongs to the third group, we apply (D2) to MF and get
à

FPCpMq
FPSipMq

CHpMF q b JαpM
F qr´1s

–
à

FPCpMq
FPSipMq

´

CHpMF ziq ‘ CHpMF ziqr´1s ‘
à

GPSipMF q

CHpMGYiq b CHpMG
F qr´1s

¯

b JαpM
F qr´1s

–
à

GPCpMq
GPSipMq

CHpMGziq b JαpM
Gqr´1s ‘

à

GPCpMq
GPSipMq

CHpMGziq b JαpM
Gqr´2s ‘

à

GPSipMq

FPCpMGq

CHpMGYiq b CHpMG
F q b JαpM

F qr´2s.

The decomposition (D13) follows. �

Remark 5.4. The decomposition of graded vector spaces appearing in [AHK18, Theorem 6.18] spe-
cializes to decompositions of CHpMq and of CHpMq, where the latter goes through Remark 4.1.
At the level of Poincaré polynomials, these decompositions coincide with those of Theorem 1.4.
However, the subspaces appearing in the decompositions are not the same. In particular, the de-
compositions in [AHK18, Theorem 6.18] are not orthogonal, and they are not compatible with the
HαpMq-module structure on CHpMq or the HαpMq-module structure on CHpMq.
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