Two problems about hyperplane arrangements (secretly about matroids)

Combinatorics meets algebra and topology

Tom Braden, June Huh, Jacob P. Matherne,
Nicholas Proudfoot, Botong Wang
University of Massachusetts Amherst, Institute for Advanced Study,
University of Oregon, University of Wisconsin Madison

BUGCAT 2018, Binghamton University

Two problems

Two problems about hyperplane arrangements:

- The "Top-Heavy Conjecture"
- The non-negativity of the coefficients of Kazhdan-Lusztig polynomials

Two problems

Two problems about hyperplane arrangements:

- The "Top-Heavy Conjecture"
- The non-negativity of the coefficients of Kazhdan-Lusztig polynomials

I will tell the story using hyperplane arrangements (realizable matroids), but both questions make sense for arbitrary matroids.

Problem 1 - The Top-Heavy
Conjecture

Hyperplane arrangements and flats

V - vector space, \mathcal{A} - finite set of hyperplanes with $\bigcap_{H \in \mathcal{A}} H=\{0\}$.
A flat is a subspace obtained by intersecting some of the hyperplanes.

Three lines in \mathbb{R}^{2}

Hyperplane arrangements and flats

V - vector space, \mathcal{A} - finite set of hyperplanes with $\bigcap_{H \in \mathcal{A}} H=\{0\}$.
A flat is a subspace obtained by intersecting some of the hyperplanes.

Three lines in \mathbb{R}^{2}

Hyperplane arrangements and flats

Four planes in \mathbb{R}^{3}

Hyperplane arrangements and flats

Hyperplane arrangements and flats

Four planes in \mathbb{R}^{3}

$$
6 \geq 4
$$

The Top-Heavy Conjecture

Problem 1: The Top-Heavy Conjecture
Conjecture (Dowling-Wilson 1974)
For all $k \leq \frac{1}{2} \operatorname{dim} V$, we have
\#(flats of $\operatorname{dim} k) \geq \#(f l a t s$ of $\operatorname{codim} k)$.

The Top-Heavy Conjecture

Problem 1: The Top-Heavy Conjecture
Conjecture Theorem (Huh-Wang 2017)
For all $k \leq \frac{1}{2} \operatorname{dim} V$, we have
\#(flats of $\operatorname{dim} k) \geq$ (flats of codim k).

Problem 2 - The non-negativity of the coefficients of Kazhdan-Lusztig polynomials

Characteristic polynomial of a hyperplane arrangement

Characteristic polynomial of a hyperplane arrangement

- $\operatorname{codim}: L(\mathcal{A}) \rightarrow \mathbb{Z}_{\geq 0}$

Characteristic polynomial of a hyperplane arrangement

- $\operatorname{codim}: L(\mathcal{A}) \rightarrow \mathbb{Z}_{\geq 0}$
- Möbius function

$$
\mu: L(\mathcal{A}) \rightarrow \mathbb{Z}
$$

Characteristic polynomial of a hyperplane arrangement

- $\operatorname{codim}: L(\mathcal{A}) \rightarrow \mathbb{Z}_{\geq 0}$
- Möbius function

$$
\mu: L(\mathcal{A}) \rightarrow \mathbb{Z}
$$

Definition

The characteristic polynomial of \mathcal{A} is

$$
\chi_{\mathcal{A}}(t)=\sum_{F \in L(\mathcal{A})} \mu(F) t^{\operatorname{dim} F} .
$$

Characteristic polynomial of a hyperplane arrangement

- $\operatorname{codim}: L(\mathcal{A}) \rightarrow \mathbb{Z}_{\geq 0}$
- Möbius function

$$
\chi_{\mathcal{A}}(t)=t^{2}-3 t+2
$$

$$
\mu: L(\mathcal{A}) \rightarrow \mathbb{Z}
$$

Definition

The characteristic polynomial of \mathcal{A} is

$$
\chi_{\mathcal{A}}(t)=\sum_{F \in L(\mathcal{A})} \mu(F) t^{\operatorname{dim} F} .
$$

Localization and contraction of arrangements

For any flat $F \in L(\mathcal{A})$, we have two new arrangements:

- \mathcal{A}^{F} - the localization of \mathcal{A} at F (arrangement in $\left.V / F\right)$.
- \mathcal{A}_{F} - the contraction of \mathcal{A} at F (arrangement in F).

Localization and contraction of arrangements

For any flat $F \in L(\mathcal{A})$, we have two new arrangements:

- \mathcal{A}^{F} - the localization of \mathcal{A} at F (arrangement in $\left.V / F\right)$.
- \mathcal{A}_{F} - the contraction of \mathcal{A} at F (arrangement in F).

Localization and contraction of arrangements

For any flat $F \in L(\mathcal{A})$, we have two new arrangements:

- \mathcal{A}^{F} - the localization of \mathcal{A} at F (arrangement in $\left.V / F\right)$.
- \mathcal{A}_{F} - the contraction of \mathcal{A} at F (arrangement in F).

Localization and contraction of arrangements

For any flat $F \in L(\mathcal{A})$, we have two new arrangements:

- \mathcal{A}^{F} - the localization of \mathcal{A} at F (arrangement in $\left.V / F\right)$.
- \mathcal{A}_{F} - the contraction of \mathcal{A} at F (arrangement in F).

Definition of Kazhdan-Lusztig polynomials

Definition (Elias-Proudfoot-Wakefield 2016)

To each arrangement \mathcal{A}, we have a unique polynomial
$P_{\mathcal{A}}(t) \in \mathbb{Z}[t]$ such that

- If $\operatorname{dim} V=0$, then $P_{\mathcal{A}}(t)=1$.

Definition of Kazhdan-Lusztig polynomials

Definition (Elias-Proudfoot-Wakefield 2016)

To each arrangement \mathcal{A}, we have a unique polynomial $P_{\mathcal{A}}(t) \in \mathbb{Z}[t]$ such that

- If $\operatorname{dim} V=0$, then $P_{\mathcal{A}}(t)=1$.
- If $\operatorname{dim} V>0$, then $\operatorname{deg} P_{\mathcal{A}}(t)<\frac{1}{2} \operatorname{dim} V$.

Definition of Kazhdan-Lusztig polynomials

Definition (Elias-Proudfoot-Wakefield 2016)

To each arrangement \mathcal{A}, we have a unique polynomial $P_{\mathcal{A}}(t) \in \mathbb{Z}[t]$ such that

- If $\operatorname{dim} V=0$, then $P_{\mathcal{A}}(t)=1$.
- If $\operatorname{dim} V>0$, then $\operatorname{deg} P_{\mathcal{A}}(t)<\frac{1}{2} \operatorname{dim} V$.
- For every $\mathcal{A}, t^{\operatorname{dim} V} P_{\mathcal{A}}\left(t^{-1}\right)=\sum_{F \in L(\mathcal{A})} \chi_{\mathcal{A}^{F}}(t) P_{\mathcal{A}_{F}}(t)$.

Definition of Kazhdan-Lusztig polynomials

Definition (Elias-Proudfoot-Wakefield 2016)

To each arrangement \mathcal{A}, we have a unique polynomial $P_{\mathcal{A}}(t) \in \mathbb{Z}[t]$ such that

- If $\operatorname{dim} V=0$, then $P_{\mathcal{A}}(t)=1$.
- If $\operatorname{dim} V>0$, then $\operatorname{deg} P_{\mathcal{A}}(t)<\frac{1}{2} \operatorname{dim} V$.
- For every $\mathcal{A}, t^{\operatorname{dim} V} P_{\mathcal{A}}\left(t^{-1}\right)=\sum_{F \in L(\mathcal{A})} \chi_{\mathcal{A}^{F}}(t) P_{\mathcal{A}_{F}}(t)$.

What do these polynomials look like?

Definition of Kazhdan-Lusztig polynomials

Definition (Elias-Proudfoot-Wakefield 2016)

To each arrangement \mathcal{A}, we have a unique polynomial
$P_{\mathcal{A}}(t) \in \mathbb{Z}[t]$ such that

- If $\operatorname{dim} V=0$, then $P_{\mathcal{A}}(t)=1$.
- If $\operatorname{dim} V>0$, then $\operatorname{deg} P_{\mathcal{A}}(t)<\frac{1}{2} \operatorname{dim} V$.
- For every $\mathcal{A}, t^{\operatorname{dim} V} P_{\mathcal{A}}\left(t^{-1}\right)=\sum_{F \in L(\mathcal{A})} \chi_{\mathcal{A}^{F}}(t) P_{\mathcal{A}_{F}}(t)$.

What do these polynomials look like?
Three lines in $\mathbb{R}^{2}: \quad P_{\mathcal{A}}(t)=1$.
Four planes in $\mathbb{R}^{3}: \quad P_{\mathcal{A}}(t)=1+2 t$.

Examples [Elias-Proudfoot-Wakefield-Young 2016]

KL polynomials for the arrangement of $d+1$ generic hyperplanes in d-space.

$d=$	1	2	3	4	5	6	7	8	9	10	11	12
1	1	1	1	1	1	1	1	1	1	1	1	1
t			2	5	9	14	20	27	35	44	54	65
t^{2}					5	21	56	120	225	385	616	936
t^{3}							14	84	300	825	1925	4004
t^{4}									42	330	1485	5005
t^{5}											132	1287

Examples [Elias-Proudfoot-Wakefield-Young 2016]

KL polynomials for the type A_{n} Coxeter arrangement.

$n=$	1	2	3	4	5	6	7	8	9	10
1	1	1	1	1	1	1	1	1	1	1
t				1	5	16	42	99	219	466
t^{2}						15	175	1225	6769	32830
t^{3}								735	16065	204400
t^{4}										76545

Properties

Problem 2: KL polynomials have non-negative coefficients

Theorem (Elias-Proudfoot-Wakefield 2016)

For any arrangement \mathcal{A}, the $K L$ polynomial $P_{\mathcal{A}}(t)$ has non-negative coefficients.

Properties

Problem 2: KL polynomials have non-negative coefficients

Theorem (Elias-Proudfoot-Wakefield 2016)

For any arrangement \mathcal{A}, the $K L$ polynomial $P_{\mathcal{A}}(t)$ has non-negative coefficients.

Conjectures (Elias-Proudfoot-Wakefield 2016):

- no internal zeroes
- unimodal
- log-concave
- real-rooted

Properties

Problem 2: KL polynomials have non-negative coefficients

Theorem (Elias-Proudfoot-Wakefield 2016)

For any arrangement \mathcal{A}, the $K L$ polynomial $P_{\mathcal{A}}(t)$ has non-negative coefficients.

Conjectures (Elias-Proudfoot-Wakefield 2016):

- no internal zeroes
- unimodal
- log-concave
- real-rooted

A sequence a_{0}, \ldots, a_{r} is called log-concave if for all $1<i<r$, we have $a_{i-1} a_{i+1} \leq a_{i}^{2}$. The sequence has no internal zeroes if $\left\{i \mid a_{i} \neq 0\right\}$ is an interval.

The Proofs - Problems 1 and 2

Combinatorics meets topology

Reminder

Problem 1: The Top-Heavy Conjecture

Conjecture Theorem (Huh-Wang 2017)

For all $k \leq \frac{1}{2} \operatorname{dim} V$, we have
\#(flats of $\operatorname{dim} k) \geq$ (flats of codim k).

Reminder

Problem 1: The Top-Heavy Conjecture

Conjecture Theorem (Huh-Wang 2017)

For all $k \leq \frac{1}{2} \operatorname{dim} V$, we have

$$
\#(f l a t s \text { of } \operatorname{dim} k) \geq \#(f l a t s \text { of } \operatorname{codim} k) .
$$

Problem 2: KL polynomials have non-negative coefficients
Theorem (Elias-Proudfoot-Wakefield 2016)
For any hyperplane arrangement \mathcal{A}, the $K L$ polynomial $P_{\mathcal{A}}(t)$ has non-negative coefficients.

Some geometry

We have

$$
V \hookrightarrow \bigoplus_{H \in \mathcal{A}} V / H \cong \bigoplus_{H \in \mathcal{A}} \mathbb{A}^{1} \subset \prod_{H \in \mathcal{A}} \mathbb{P}^{1}
$$

Let $Y:=\bar{V} \subset \prod_{H \in \mathcal{A}} \mathbb{P}^{1} . \longleftarrow$ the Schubert variety of \mathcal{A}

Some geometry

We have

$$
V \hookrightarrow \bigoplus_{H \in \mathcal{A}} V / H \cong \bigoplus_{H \in \mathcal{A}} \mathbb{A}^{1} \subset \prod_{H \in \mathcal{A}} \mathbb{P}^{1}
$$

Let $Y:=\bar{V} \subset \prod_{H \in \mathcal{A}} \mathbb{P}^{1} . \longleftarrow$ the Schubert variety of \mathcal{A}

Some geometry

We have

$$
V \hookrightarrow \bigoplus_{H \in \mathcal{A}} V / H \cong \bigoplus_{H \in \mathcal{A}} \mathbb{A}^{1} \subset \prod_{H \in \mathcal{A}} \mathbb{P}^{1}
$$

Let $Y:=\bar{V} \subset \prod_{H \in \mathcal{A}} \mathbb{P}^{1} . \longleftarrow$ the Schubert variety of \mathcal{A}

Y has a stratification $Y=\coprod_{F} Y_{F}$ by affine spaces.

Affine pavings

The stratification by affine cells gives us two things:

1. $\operatorname{dim} H^{2 k}(Y)=\#(f l a t s$ of codim $k)$.
2. [Björner-Ekedahl 2009] There is an injection

$$
H^{\bullet}(Y) \hookrightarrow \mathrm{IH}^{\bullet}(Y)
$$

Affine pavings

The stratification by affine cells gives us two things:

1. $\operatorname{dim} H^{2 k}(Y)=\#(f l a t s$ of codim $k)$.
2. [Björner-Ekedahl 2009] There is an injection

$$
H^{\bullet}(Y) \hookrightarrow \mathrm{IH}^{\bullet}(Y)
$$

We need an injection:

$$
\begin{gathered}
H^{2(\operatorname{dim} V-k)}(Y) \\
H^{2 k}(Y)
\end{gathered}
$$

Affine pavings

The stratification by affine cells gives us two things:

1. $\operatorname{dim} H^{2 k}(Y)=\#(f l a t s$ of codim $k)$.
2. [Björner-Ekedahl 2009] There is an injection

$$
H^{\bullet}(Y) \hookrightarrow \mathrm{IH}^{\bullet}(Y)
$$

We need an injection:

$$
\begin{aligned}
& H^{2(\operatorname{dim} V-k)}(Y) \\
& H L \text { (if } Y \text { smooth } \uparrow \uparrow \\
& H^{2 k}(Y)
\end{aligned}
$$

One property of intersection cohomology:

- $\mathrm{IH}^{\bullet}(Y)$ satisfies Hard Lefschetz (since Y is projective).

Proof of the Top-Heavy Conjecture

Let $L \in H^{2}(Y)$ be an ample class. If $k \leq \frac{1}{2} \operatorname{dim} V$, then consider the following diagram.

$$
\begin{array}{r}
H^{2(\operatorname{dim} V-k)}(Y) \xrightarrow{\stackrel{\mathrm{L}}{ }(\operatorname{dim} V-2 k) \uparrow} \mathrm{IH}^{2(\operatorname{dim} V-k)}(Y) \\
\cong \uparrow^{L^{2(\operatorname{dim} V-2 k)}} \\
H^{2 k}(Y) \underset{\mathrm{B}-\mathrm{E} 09}{\longrightarrow} \mathrm{IH}^{2 k}(Y)
\end{array}
$$

Proof of the Top-Heavy Conjecture

Let $L \in H^{2}(Y)$ be an ample class. If $k \leq \frac{1}{2} \operatorname{dim} V$, then consider the following diagram.

$$
\begin{aligned}
& H^{2(\operatorname{dim} V-k)}(Y) \xrightarrow{\mathrm{B}-\mathrm{E} 09} \mathrm{IH}^{2(\operatorname{dim} V-k)}(Y) \\
& \cong \uparrow L^{2(\operatorname{dim} v-2 k)} \\
& L^{2(\operatorname{dim} v-2 k)} \uparrow \\
& H^{2 k}(Y) \xrightarrow[\mathrm{B}-\mathrm{E} 09]{ } \mathrm{IH}^{2 k}(Y)
\end{aligned}
$$

\Longrightarrow Top-Heavy Conjecture (We gave a proof for Problem 1!)

"Proof" for Problem 2

Theorem (Elias-Proudfoot-Wakefield 2016)
For any hyperplane arrangement \mathcal{A}, we have

$$
P_{\mathcal{A}}(t)=\sum_{i \geq 0} t^{i} \operatorname{dim} \operatorname{IH}_{(\infty, \ldots, \infty)}^{2 i}(Y)
$$

Problems 1 and 2 for arbitrary matroids

Combinatorics meets algebra (while being informed by topology)

Matroids

A matroid ([Whitney 1935]) is a gadget that generalizes the notion of linear (in)dependence in a vector space. It has a

- ground set I (finite set)
- a collection of distinguished subsets (independent sets, bases, closed sets, circuits, ...) satisfying some axioms

Matroids

A matroid ([Whitney 1935]) is a gadget that generalizes the notion of linear (in)dependence in a vector space. It has a

- ground set / (finite set)
- a collection of distinguished subsets (independent sets, bases, closed sets, circuits, ...) satisfying some axioms

Examples can be gotten from

- vectors in a vector space
- hyperplane arrangements
- graphs

Matroids

A matroid ([Whitney 1935]) is a gadget that generalizes the notion of linear (in)dependence in a vector space. It has a

- ground set I (finite set)
- a collection of distinguished subsets (independent sets, bases, closed sets, circuits, ...) satisfying some axioms

Examples can be gotten from

- vectors in a vector space
- hyperplane arrangements
- graphs

Not all matroids can be realized as vectors in a vector space.

Problems 1 and 2 for arbitrary matroids

Problem 1: The Top-Heavy Conjecture

Conjecture (Dowling-Wilson 1974)

Let M be an arbitrary matroid. For all $k \leq \frac{1}{2} \mathrm{rk} M$, we have

$$
\# L(M)^{\mathrm{rk} M-k} \geq \# L(M)^{k}
$$

Problem 2: KL polynomials have non-negative coefficients
Conjecture (Elias-Proudfoot-Wakefield 2016)
For any matroid M, the $K L$ polynomial $P_{M}(t)$ has non-negative coefficients.

Repeated slide! Proof of the Top-Heavy Conjecture

Let $L \in H^{2}(Y)$ be an ample class. If $k \leq \frac{1}{2} \operatorname{dim} V$, then consider the following diagram.

$$
\begin{aligned}
& H^{2(\operatorname{dim} V-k)}(Y) \xrightarrow{\mathrm{B}-\mathrm{E} 09} \mathrm{IH}^{2(\operatorname{dim} V-k)}(Y) \\
& L^{2(\operatorname{dim} v-2 k)} \uparrow \cong \mathrm{L}^{2(\operatorname{dim} v-2 k)} \\
& H^{2 k}(Y) \xrightarrow[\mathrm{B}-\mathrm{E} 09]{ } \mathrm{IH}^{2 k}(Y)
\end{aligned}
$$

\Longrightarrow Top-Heavy Conjecture for realizable matroids (hyperplane arrangements)

The semi-wonderful model
(in progress: Braden-Huh-M.-Proudfoot-Wang)

One can define a certain resolution

$$
\tilde{Y} \longrightarrow Y
$$

The semi-wonderful model

(in progress: Braden-Huh-M.-Proudfoot-Wang)

One can define a certain resolution

$$
\tilde{Y} \longrightarrow Y .
$$

- [Huh-Wang 2017] There is a ring $B^{\bullet}(M)$ such that $B^{\bullet}(M) \cong H^{\bullet}(Y)$ when M is realizable.
- [Braden-Huh-M.-Proudfoot-Wang] There is a ring $A^{\bullet}(M)$ such that $A^{\bullet}(M) \cong H^{\bullet}(\widetilde{Y})$ when M is realizable.

Strategy for the proof

(in progress: Braden-Huh-M.-Proudfoot-Wang)

Note that

$$
\begin{aligned}
& H^{\bullet}(Y) \subset \mathrm{IH}^{\bullet}(Y) \subset H^{\bullet}(\widetilde{Y}) . \\
& B^{\bullet}(M) \quad A^{\bullet}(M)
\end{aligned}
$$

Strategy for the proof

(in progress: Braden-Huh-M.-Proudfoot-Wang)

Note that

$$
\begin{aligned}
& H^{\bullet}(Y) \subset \mathrm{IH}^{\bullet}(Y) \subset H^{\bullet}(\tilde{Y}) . \\
& B^{\bullet}(M) \quad A^{\bullet}(M)
\end{aligned}
$$

Strategy:

1. Decompose $A^{\bullet}(M)$ as a $B^{\bullet}(M)$-module.
2. Find the summand $I^{\bullet}(M)$, and get injection $B^{\bullet}(M) \hookrightarrow I^{\bullet}(M)$.

Strategy for the proof

(in progress: Braden-Huh-M.-Proudfoot-Wang)

Note that

$$
\begin{aligned}
& H^{\bullet}(Y) \subset \mathrm{IH}^{\bullet}(Y) \subset H^{\bullet}(\widetilde{Y}) . \\
& B^{\bullet}(M) \quad A^{\bullet}(M)
\end{aligned}
$$

Strategy:

1. Decompose $A^{\bullet}(M)$ as a $B^{\bullet}(M)$-module.
2. Find the summand $I^{\bullet}(M)$, and get injection $B^{\bullet}(M) \hookrightarrow I^{\bullet}(M)$.
3. Prove "Hard Lefschetz" for $I^{\circ}(M)$.

Strategy for the proof

(in progress: Braden-Huh-M.-Proudfoot-Wang)

Note that

$$
\begin{aligned}
& H^{\bullet}(Y) \subset \mathrm{IH}^{\bullet}(Y) \subset H^{\bullet}(\widetilde{Y}) . \\
& B^{\bullet}(M)
\end{aligned} A^{\bullet}(M) .
$$

Strategy:

1. Decompose $A^{\bullet}(M)$ as a $B^{\bullet}(M)$-module.
2. Find the summand $I^{\bullet}(M)$, and get injection $B^{\bullet}(M) \hookrightarrow I^{\bullet}(M)$.
3. Prove "Hard Lefschetz" for $I^{\bullet}(M)$.
4. Run the same argument.

\[

\]

Strategy for the proof

(in progress: Braden-Huh-M.-Proudfoot-Wang)

Note that

$$
\begin{aligned}
& H^{\bullet}(Y) \subset \mathrm{IH}^{\bullet}(Y) \subset H^{\bullet}(\widetilde{Y}) . \\
& B^{\bullet}(M)
\end{aligned} A^{\bullet}(M) \text {. }
$$

Strategy:

1. Decompose $A^{\bullet}(M)$ as a $B^{\bullet}(M)$-module.
2. Find the summand $I^{\bullet}(M)$, and get injection $B^{\bullet}(M) \hookrightarrow I^{\bullet}(M)$.
3. Prove "Hard Lefschetz" for $I^{\bullet}(M)$.
4. Run the same argument.

$$
\begin{gathered}
B^{\mathrm{rk} M-k}(M) \longleftrightarrow I^{\mathrm{rk} M-k}(M) \\
\cong \uparrow H L \\
B^{k}(M) \longleftrightarrow I^{k}(M)
\end{gathered}
$$

Problem 2 for arbitrary matroids

(in progress: Braden-Huh-M.-Proudfoot-Wang)

Conjecture (Braden-Huh-M.-Proudfoot-Wang)
For an arbitrary matroid M, we have

$$
P_{M}(t)=\operatorname{Poin}\left(I^{\bullet}(M) \otimes_{B^{\bullet}(M)} \mathbb{C}\right)
$$

The end

Thanks!

