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Two problems

Two problems about hyperplane arrangements:

• The “Top-Heavy Conjecture”

• The non-negativity of the coefficients of Kazhdan–Lusztig

polynomials

I will tell the story using hyperplane arrangements (realizable

matroids), but both questions make sense for arbitrary matroids.
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Problem 1 - The Top-Heavy

Conjecture



Hyperplane arrangements and flats

V - vector space, A - finite set of hyperplanes with
⋂
H∈A

H = {0}.

A flat is a subspace obtained by intersecting some of the

hyperplanes.

Three lines in R2

21

3

V
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Hyperplane arrangements and flats

Four planes in R3

V

H1 H2 H3 H4

H1 ∩ H2 H1 ∩ H3 H1 ∩ H4 H2 ∩ H3 H2 ∩ H4 H3 ∩ H4

{0}

6 ≥ 4
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The Top-Heavy Conjecture

Problem 1: The Top-Heavy Conjecture

Conjecture (Dowling–Wilson 1974)

For all k ≤ 1
2 dimV , we have

#(flats of dim k) ≥ #(flats of codim k).
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The Top-Heavy Conjecture

Problem 1: The Top-Heavy Conjecture

Conjecture Theorem (Huh–Wang 2017)

For all k ≤ 1
2 dimV , we have

#(flats of dim k) ≥ #(flats of codim k).
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Problem 2 - The non-negativity of

the coefficients of Kazhdan–Lusztig

polynomials



Characteristic polynomial of a hyperplane arrangement

21

3

V

{0}

H1 H2 H3

V

• codim : L(A)→ Z≥0
• Möbius function

µ : L(A)→ Z
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Characteristic polynomial of a hyperplane arrangement
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Characteristic polynomial of a hyperplane arrangement
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Characteristic polynomial of a hyperplane arrangement

21

3

V

{0}(2)(2)

H1(1)(−1) H2(1)(−1) H3(1)(−1)

V (0)(1)

• codim : L(A)→ Z≥0
• Möbius function

µ : L(A)→ Z

Definition

The characteristic polynomial of A is

χA(t) =
∑

F∈L(A)

µ(F )tdimF .
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Characteristic polynomial of a hyperplane arrangement

21

3

V

{0}(2)(2)

H1(1)(−1) H2(1)(−1) H3(1)(−1)

V (0)(1)

• codim : L(A)→ Z≥0
• Möbius function

µ : L(A)→ Z
χA(t) = t2 − 3t + 2

Definition

The characteristic polynomial of A is

χA(t) =
∑

F∈L(A)

µ(F )tdimF .
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Localization and contraction of arrangements

For any flat F ∈ L(A), we have two new arrangements:

• AF - the localization of A at F (arrangement in V /F ).

• AF - the contraction of A at F (arrangement in F ).

•

• • • •

• F • • • •

•L(A) L(AF )

•

• •

F

L(AF )

F

•

6



Localization and contraction of arrangements

For any flat F ∈ L(A), we have two new arrangements:

• AF - the localization of A at F (arrangement in V /F ).

• AF - the contraction of A at F (arrangement in F ).

•

• • • •

• F • • • •

•L(A)

L(AF )

•

• •

F

L(AF )

F

•

6



Localization and contraction of arrangements

For any flat F ∈ L(A), we have two new arrangements:

• AF - the localization of A at F (arrangement in V /F ).

• AF - the contraction of A at F (arrangement in F ).

•

• • • •

• F • • • •

•L(A) L(AF )

•

• •

F

L(AF )

F

•

6



Localization and contraction of arrangements

For any flat F ∈ L(A), we have two new arrangements:

• AF - the localization of A at F (arrangement in V /F ).

• AF - the contraction of A at F (arrangement in F ).

•

• • • •

• F • • • •

•L(A) L(AF )

•

• •

F

L(AF )

F

•

6



Definition of Kazhdan–Lusztig polynomials

Definition (Elias–Proudfoot–Wakefield 2016)

To each arrangement A, we have a unique polynomial

PA(t) ∈ Z[t] such that

• If dimV = 0, then PA(t) = 1.

• If dimV > 0, then degPA(t) < 1
2 dimV .

• For every A, tdimVPA(t−1) =
∑

F∈L(A)

χAF (t)PAF
(t).

What do these polynomials look like?

Three lines in R2: PA(t) = 1.

Four planes in R3: PA(t) = 1 + 2t.
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Examples [Elias–Proudfoot–Wakefield–Young 2016]

KL polynomials for the arrangement of d + 1 generic hyperplanes

in d-space.

d = 1 2 3 4 5 6 7 8 9 10 11 12

1 1 1 1 1 1 1 1 1 1 1 1 1

t 2 5 9 14 20 27 35 44 54 65

t2 5 21 56 120 225 385 616 936

t3 14 84 300 825 1925 4004

t4 42 330 1485 5005

t5 132 1287
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Examples [Elias–Proudfoot–Wakefield–Young 2016]

KL polynomials for the type An Coxeter arrangement.

n = 1 2 3 4 5 6 7 8 9 10

1 1 1 1 1 1 1 1 1 1 1

t 1 5 16 42 99 219 466

t2 15 175 1225 6769 32830

t3 735 16065 204400

t4 76545
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Properties

Problem 2: KL polynomials have non-negative coefficients

Theorem (Elias–Proudfoot–Wakefield 2016)

For any arrangement A, the KL polynomial PA(t) has

non-negative coefficients.

Conjectures (Elias–Proudfoot–Wakefield 2016):

• no internal zeroes

• unimodal

• log-concave

• real-rooted

A sequence a0, . . . , ar is called log-concave if for all 1 < i < r , we

have ai−1ai+1 ≤ a2i . The sequence has no internal zeroes if

{i | ai 6= 0} is an interval.
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The Proofs - Problems 1 and 2

Combinatorics meets topology



Reminder

Problem 1: The Top-Heavy Conjecture

Conjecture Theorem (Huh–Wang 2017)

For all k ≤ 1
2 dimV , we have

#(flats of dim k) ≥ #(flats of codim k).

Problem 2: KL polynomials have non-negative coefficients

Theorem (Elias–Proudfoot–Wakefield 2016)

For any hyperplane arrangement A, the KL polynomial PA(t) has

non-negative coefficients.
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Some geometry

We have

V ↪→
⊕
H∈A

V /H ∼=
⊕
H∈A

A1 ⊂
∏
H∈A

P1.

Let Y := V ⊂
∏
H∈A

P1. ←− the Schubert variety of A

21

3

V

(∞,∞,∞)

neighborhood of (0, 0, 0) neighborhood of (∞,∞,∞)

Y has a stratification Y =
∐
F

YF by affine spaces.
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Affine pavings

The stratification by affine cells gives us two things:

1. dimH2k(Y ) = #(flats of codim k).

2. [Björner–Ekedahl 2009] There is an injection

H•(Y ) ↪→ IH•(Y ).

We need an injection:

H2(dimV−k)(Y )

H2k(Y )

One property of intersection cohomology:

• IH•(Y ) satisfies Hard Lefschetz (since Y is projective).
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2. [Björner–Ekedahl 2009] There is an injection

H•(Y ) ↪→ IH•(Y ).

We need an injection:

H2(dimV−k)(Y )

H2k(Y )

HL (if Y smooth)

One property of intersection cohomology:

• IH•(Y ) satisfies Hard Lefschetz (since Y is projective).
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Proof of the Top-Heavy Conjecture

Let L ∈ H2(Y ) be an ample class. If k ≤ 1
2 dimV , then consider

the following diagram.

H2(dimV−k)(Y ) IH2(dimV−k)(Y )

H2k(Y ) IH2k(Y )

B–E 09

B–E 09

L2(dim V−2k) L2(dim V−2k)∼=
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Proof of the Top-Heavy Conjecture

Let L ∈ H2(Y ) be an ample class. If k ≤ 1
2 dimV , then consider

the following diagram.

H2(dimV−k)(Y ) IH2(dimV−k)(Y )

H2k(Y ) IH2k(Y )

B–E 09

B–E 09

L2(dim V−2k) L2(dim V−2k)∼=

=⇒ Top-Heavy Conjecture (We gave a proof for Problem 1!)

14



“Proof” for Problem 2

Theorem (Elias–Proudfoot–Wakefield 2016)

For any hyperplane arrangement A, we have

PA(t) =
∑
i≥0

t i dim IH2i
(∞,...,∞)(Y ).
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Problems 1 and 2 for arbitrary

matroids

Combinatorics meets algebra (while being informed by topology)



Matroids

A matroid ([Whitney 1935]) is a gadget that generalizes the

notion of linear (in)dependence in a vector space. It has a

- ground set I (finite set)

- a collection of distinguished subsets (independent sets, bases,

closed sets, circuits, . . . ) satisfying some axioms

Examples can be gotten from

• vectors in a vector space

• hyperplane arrangements

• graphs

Not all matroids can be realized as vectors in a vector space.
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Problems 1 and 2 for arbitrary matroids

Problem 1: The Top-Heavy Conjecture

Conjecture (Dowling–Wilson 1974)

Let M be an arbitrary matroid. For all k ≤ 1
2rkM, we have

#L(M)rkM−k ≥ #L(M)k .

Problem 2: KL polynomials have non-negative coefficients

Conjecture (Elias–Proudfoot–Wakefield 2016)

For any matroid M, the KL polynomial PM(t) has non-negative

coefficients.
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Repeated slide! Proof of the Top-Heavy Conjecture

Let L ∈ H2(Y ) be an ample class. If k ≤ 1
2 dimV , then consider

the following diagram.

H2(dimV−k)(Y ) IH2(dimV−k)(Y )

H2k(Y ) IH2k(Y )

B–E 09

B–E 09

L2(dim V−2k) L2(dim V−2k)∼=

=⇒ Top-Heavy Conjecture for realizable matroids (hyperplane

arrangements)

18



The semi-wonderful model

(in progress: Braden–Huh–M.–Proudfoot–Wang)

One can define a certain resolution

Ỹ −→ Y .

• [Huh–Wang 2017] There is a ring B•(M) such that

B•(M) ∼= H•(Y ) when M is realizable.

• [Braden–Huh–M.–Proudfoot–Wang] There is a ring A•(M)

such that A•(M) ∼= H•(Ỹ ) when M is realizable.
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Strategy for the proof

(in progress: Braden–Huh–M.–Proudfoot–Wang)

Note that

H•(Y ) ⊂ IH•(Y ) ⊂ H•(Ỹ ).

B•(M) A•(M)

Strategy:

1. Decompose A•(M) as a B•(M)-module.

2. Find the summand I •(M), and get injection B•(M) ↪→ I •(M).

3. Prove “Hard Lefschetz” for I •(M).

4. Run the same argument.

BrkM−k(M) I rkM−k(M)

Bk(M) I k(M)

HL∼=

20
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B•(M) A•(M)

Strategy:

1. Decompose A•(M) as a B•(M)-module.

2. Find the summand I •(M), and get injection B•(M) ↪→ I •(M).

3. Prove “Hard Lefschetz” for I •(M).

4. Run the same argument.

BrkM−k(M) I rkM−k(M)

Bk(M) I k(M)

HL∼=

20



Strategy for the proof

(in progress: Braden–Huh–M.–Proudfoot–Wang)

Note that

H•(Y ) ⊂ IH•(Y ) ⊂ H•(Ỹ ).
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BrkM−k(M) I rkM−k(M)

Bk(M) I k(M)

HL∼=
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Problem 2 for arbitrary matroids

(in progress: Braden–Huh–M.–Proudfoot–Wang)

Conjecture (Braden–Huh–M.–Proudfoot–Wang)

For an arbitrary matroid M, we have

PM(t) = Poin(I •(M)⊗B•(M) C).
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The end

Thanks!
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