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Goals

•Prove the top heavy conjecture for arbitrary matroids.
•Prove that Kazhdan–Lusztig polynomials of matroids have non-negative
coefficients.

Kazhdan–Lusztig theory

For Coxeter groups For matroids
Coxeter group matroid M (with ground set E)

Weyl group realizable matroid
Bruhat poset lattice of flats L(M)
R-polynomial characteristic polyn. χM(t) =

∑
F∈L(M)

µ(F )trkM−rkF

Hecke algebra ?
Polo real-rooted
Schubert variety Xw Y := V ⊂ (P1)E

Definition [Elias–Proudfoot–Wakefield 2016]

To each matroid M , we have a unique polynomial PM(t) ∈ Z[t] such
that
• If rkM = 0, then PM(t) = 1.
• If rkM > 0, then degPM(t) < 1

2rkM .
•For every M , trkMPM(t−1) =

∑
F∈L(M)

χMF
(t)PMF(t).

Example: U3,4

∅

{1} {2} {3} {4}

{1, 2} {1, 3} {1, 4} {2, 3} {2, 4} {3, 4}

{1, 2, 3, 4}

χM(t) = t3 − 4t2 + 6t− 3
PM(t) = 1 + 2t

4 ≤ 6

The realizable case

Theorem [Elias–Proudfoot–Wakefield 2016]

For every realizable M ,
PM(t) =

∑
i≥0

dim IH2i
(∞,...,∞)(Y )ti.

Conjecture [Dowling–Wilson 1974], Theorem
[Huh–Wang 2017] for M realizable

For all k ≤ 1
2rkM , we have

#L(M)k ≤ #L(M)rkM−k.

V ↪→
⊕
H∈A

V/H ∼=
⊕
H∈A

A1 ⊂
∏
H∈A

P1

Let Y := V ⊂
∏
H∈A

P1.

∅
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V
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Y has a stratification Y =
∐

F∈L(M)
YF by affine spaces.

YF = {p ∈ Y | pi =∞⇐⇒ i 6∈ F}.
Example: Y∅ = {(∞, . . . ,∞)} and YE = V .

Properties of this affine paving

1. dimH2k(Y ) = #L(M)k.
2. [Björner–Ekedahl 2009] There is an injection

H•(Y ) ↪→ IH•(Y ).

Proof of the top-heavy conjecture

Let L ∈ H2(Y ) be an ample class. If k ≤ 1
2rkM , then consider the

following diagram.

H2(rkM−k)(Y ) IH2(rkM−k)(Y )

H2k(Y ) IH2k(Y )

B–E 09

B–E 09

L2(rkM−2k) L2(rkM−2k)∼=

Arbitrary matroids
[Braden–Huh–M.–Proudfoot–Wang]

Define the “semi-wonderful” resolution
Ỹ −→ Y by

1 first blowing up the point Y∅,
2 then the proper transforms of Y{i},
3 then the proper transforms of YF (with rkF = 2) strata, and so on...

Theorems [Huh–Wang 2017], [BHMPW]

•There is a ring B•(M) ∼= H•(Y ) when M is realizable.
•There is a ring A•(M) ∼= H•(Ỹ ) when M is realizable.

Sketch of top-heavy conjecture for all matroids

Note that H•(Y ) ⊂ IH•(Y ) ⊂ H•(Ỹ ).
Strategy:
1 Decompose A•(M) as a B•(M)-module.
2 Find the summand I•(M), and make an injection B•(M) PD

↪→ I•(M).
3 Prove Hard Lefschetz for I•(M) and run the same argument.

BrkM−k(M) I rkM−k(M)

Bk(M) Ik(M)

PD

PD

HL∼=

Definition of semi-wonderful Chow ring A•(M)

A•(M) is the quotient of
C[xF , yi | F ∈ L(M) is a proper flat, and i ∈ E]

by the ideal generated by
•xF1xF2, where F1 and F2 are incomparable,
• yi −

∑
i 6∈F xF , and

• yixF if i 6∈ F .
B•(M) is the subring of A•(M) generated by the yi, for all i ∈ E.

Conjecture (non-negativity of the PM(t))

PM(t) = Poin(I•(M)⊗B•(M) C).


