## Singular Hodge theory of matroids

Tom Braden, June Huh, Jacob P. Matherne, Nicholas Proudfoot, and Botong Wang
Institute for Advanced Study, University of Massachusetts Amherst, University of Oregon, University of Wisconsin Madison

## Goals

- Prove the top heavy conjecture for arbitrary matroids.
- Prove that Kazhdan-Lusztig polynomials of matroids have non-negative coefficients.

Kazhdan-Lusztig theory

| For Coxeter groups | For matroids |
| :--- | :--- |
| Coxeter group | matroid $M$ (with ground set $E)$ |
| $\quad$ Weyl group | $\quad$realizable matroid <br> Bruhat poset |
| $R$-polynomial | lattice of flats $L(M)$ |
| characteristic polyn. $\chi_{M}(t)=\sum_{F \in L(M)} \mu(F) t^{\text {rk } M \text {-rk } F}$ |  |
| Hecke algebra | $?$ |
| Polo |  |
| Schubert variety $\overline{X_{w}}$ | $Y:=\bar{V} \subset\left(\mathbb{P}^{1}\right)^{E}$ |

## Definition [Elias-Proudfoot-Wakefield 2016]

$$
\begin{aligned}
& \text { To each matroid } M \text {, we have a unique polynomial } P_{M}(t) \in \mathbb{Z}[t] \text { such } \\
& \text { that } \\
& \text { - If } \operatorname{rk} M=0 \text {, then } P_{M}(t)=1 \text {. } \\
& \text { - If } \operatorname{rk} M>0 \text {, then } \operatorname{deg} P_{M}(t)<\frac{1}{2} \mathrm{rk} M \text {. } \\
& \text { - For every } M, t^{\mathrm{rk} M} P_{M}\left(t^{-1}\right)=\sum_{F \in L(M)} \chi_{M_{F}}(t) P_{M^{F}}(t) \text {. }
\end{aligned}
$$

Example: $U_{3,4}$


The realizable case
Theorem [Elias-Proudfoot-Wakefield 2016] For every realizable $M$,

$$
P_{M}(t)=\sum_{i \geq 0} \operatorname{dim} \operatorname{IH}_{(\infty, \ldots, \infty)}^{2 i}(Y) t^{i}
$$

Conjecture [Dowling-Wilson 1974], Theorem [Huh-Wang 2017] for $M$ realizable

For all $k \leq \frac{1}{2} \mathrm{rk} M$, we have

$$
\# L(M)^{k} \leq \# L(M)^{\mathrm{rk} M-k}
$$

$$
V \hookrightarrow \underset{H \in \mathcal{A}}{ } V / H \cong \bigoplus_{H \in \mathcal{A}} \mathbb{A}^{1} \subset \prod_{H \in \mathcal{A}} \mathbb{P}^{1}
$$

Let $Y:=\bar{V} \subset \prod_{H \in \mathcal{A}} \mathbb{P}^{1}$.
Arbitrary matroids [Braden-Huh-M.-Proudfoot-Wang]

$$
\begin{aligned}
& \text { Define the "semi-wonderful" resolution } \\
& \qquad \widetilde{Y} \longrightarrow Y \quad \text { by }
\end{aligned}
$$

(1) first blowing up the point $Y_{\emptyset}$,
(2) then the proper transforms of $Y_{\{i\}}$, (3) then the proper transforms of $Y_{F}$ (with $\operatorname{rk} F=2$ ) strata, and so on..

## Theorems [Huh-Wang 2017], [BHMPW]

- There is a ring $B^{\bullet}(M) \cong H^{\bullet}(Y)$ when $M$ is realizable.
- There is a $\operatorname{ring} A^{\bullet}(M) \cong H^{\bullet}(\widetilde{Y})$ when $M$ is realizable.

Sketch of top-heavy conjecture for all matroids
Note that $H^{\bullet}(Y) \subset \mathrm{IH}^{\bullet}(Y) \subset H^{\bullet}(\widetilde{Y})$.
Strategy:

- Decompose $A^{\bullet}(M)$ as a $B^{\bullet}(M)$-module.
© Find the summand $I^{\bullet}(M)$, and make an injection $B^{\bullet}(M) \stackrel{P D}{\longrightarrow} I^{\bullet}(M)$. © Prove Hard Lefschetz for $I^{\bullet}(M)$ and run the same argument.

$$
\begin{gathered}
B^{\mathrm{rk} M-k}(M) \xrightarrow{P D} I^{\mathrm{rk} M-k}(M) \\
\cong \\
\cong \bigcap_{H L} \\
B^{k}(M) \xrightarrow{P D} I^{k}(M)
\end{gathered}
$$

Definition of semi-wonderful Chow ring $A^{\bullet}(M)$
$A^{\bullet}(M)$ is the quotient of
$\mathbb{C}\left[x_{F}, y_{i} \mid F \in L(M)\right.$ is a proper flat, and $\left.i \in E\right]$
by the ideal generated by

- $x_{F_{1}} x_{F_{2}}$, where $F_{1}$ and $F_{2}$ are incomparable,
- $y_{i}-\sum_{i \notin F} x_{F}$, and
- $y_{i} x_{F}$ if $i \notin F$.
$B^{\bullet}(M)$ is the subring of $A \bullet(M)$ generated by the $y_{i}$, for all $i \in E$.
Let $L \in H^{2}(Y)$ be an ample class. If $k \leq \frac{1}{2} \mathrm{rk} M$, then consider the following diagram.

Conjecture (non-negativity of the $P_{M}(t)$ )
$P_{M}(t)=\operatorname{Poin}\left(I^{\bullet}(M) \otimes_{B^{\bullet}(M)} \mathbb{C}\right)$.

