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Abstract. In this paper, we give a cancellation-free antipode formula (for
uniform matroids) for the restriction-contraction matroid Hopf algebra, using

the technique of splitting and merging via a sign-reversing involution. The
cancellation-free formula expresses the antipode of uniform matroids as a sum

over certain ordered set partitions.

1. Introduction and methods

1.1. Introduction. Many combinatorial structures can be used as building blocks
to construct graded connected Hopf algebras. Examples come from graphs, sim-
plices, polynomials, Young tableaux, and many more. In this paper we will focus
on the restriction-contraction Hopf algebra of matroids first introduced by Schmitt
[Sch94].

When a Hopf algebra arises from combinatorial objects, it is often referred to
as a combinatorial Hopf algebra (see [GR16] for an excellent treatment of Hopf
algebras, especially as they appear in combinatorics). Motivations for studying
these algebras appear throughout many diverse areas of mathematics, including:
combinatorics, representation theory, mathematical physics, and K-theory. Given
a combinatorial Hopf algebra, the computation of its antipode gives combinatorial
identities for the objects which built up the algebra. For this reason, finding the
simplest expression for the antipode can prove extremely valuable.

In general the antipode is given in terms of satisfying certain commutative di-
agrams (see Definition 2.17), but in the setting where the Hopf algebra is both
graded and connected we have a formula given by Takeuchi which describes the
map explicitly.

Theorem ([Tak71]). A graded, connected k-bialgebra H is a Hopf algebra, and it
has a unique antipode S whose formula is given by

(1) S =
∑
i∈Z≥0

(−1)iµi−1 ◦ π⊗i ◦∆i−1

where µ−1 = η, ∆−1 = ε, and π : H → H is the projection map defined by extending
linearly the map

π|H`
=

{
0 if ` = 0,
id if ` ≥ 1,

where H` is the `th graded piece of H.
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The only drawback to the formula above is that it can contain a large amount of
cancellation. The goal in general is then to find refinements of this formula so that
we can more easily compute the antipode of H. Ideally this leads to a cancellation
free formula. Much work has been done in this area for specific Hopf algebras.
Humpert and Martin [HM12] found a cancellation free formula for the incidence
Hopf algebra on graphs. Aguiar and Mahajan [AM10] introduced an embedding
into the Hopf monoid which was utilized by Aguiar and Ardila [AA16] and later by
Benedetti and Bergeron [BB16] to compute various cancellation free formulas for
embeddable Hopf algebras. Lam and Pylyavskyy [LP07] introduced K-theoretic
analogs of various Hopf algebras related to symmetric functions. Patrias [Pat16]
gave explicit (cancellation free) formulas for the antipodes of these K-theoretic Hopf
algebras. Benedetti and Sagan [BS16] applied a sign reversing involution to find
a cancellation free antipode formula for the shuffle Hopf algebra, the Hopf algebra
of polynomials, and mQSym (recovering one of the antipode formulas of Patrias);
among others. And very recently Benedetti, Hallam, and Macechek [BHM16] were
able to construct a cancellation free formula for the Hopf algebra of simplicial
complexes.

In this paper, we begin working towards finding a cancellation free antipode
formula for the restriction-contraction Hopf algebra of matroids. We will define the
multiplication and the comultiplication for this Hopf algebra in Section 2, as well
as give a brief background on matroids. The matroid terminology used throughout
the paper will be consistent with that of Oxley’s book [Oxl11]. Our main result is
a cancellation free formula for computing the antipode of uniform matroids in this
algebra.

Theorem (Main Result). The image of the uniform matroid Umn under the antipode
map S is given by the following cancellation free formula:

S(Umn ) =
∑
I,L

(−1)n−|L|+1U
|I|
I ⊕ U

m−|I|
L ,

where I, L ranges over all pairs of subsets of the ground set E such that

• I and L are disjoint,
• |I| < m, and
• |I|+ |L| ≥ m.

We believe that the next step will be to look at utilizing similar techniques to
extend these results to all matroids.

1.2. Methods. Before we move on to the background work we should briefly talk
about the strategy of the proof. The authors believe that similar methodology could
be applied to an assortment of Hopf algebras where cancellation free formulas have
still proven elusive. Therefore we would like to give a brief overview of our methods.
We utilize similar approaches to those of Benedetti and Sagan [BS16] by applying
split-merge involution.

(1) The first thing that must be done is unpack the Takeuchi formula. We need
to understand what this sum looks like in our particular Hopf algebra. In
the algebra considered by this paper, this reduces to a sum over certain
ordered set partitions (see Proposition 3.1).

(2) The Takeuchi summation contains many cancellations. Our next step is
to systematically try and pair them off with terms that differ only in the
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sign. We do this by constructing a sign reversing involution on our set of or-
dered set partitions. This involution needs to take one partition to another,
and make sure that their associated terms in the Takeuchi summation are
identical up to a sign change.

(3) This gives us a way to pair off the terms. Finding a negative term for each
positive term by letting the involution guide you to the next counterpart.
Therefore the only terms that will remain in the Takeuchi summation after
the cancellation will be the terms that correspond to fixed points of the
involution.

(4) The next step is to characterize the fixed points of our involution. If these
fixed points correspond to unique terms in the Takeuchi summation, we
know that this new formula is in fact cancellation free.

This methodology is obviously not unique to antipode computations and can be
found throughout combinatorial literature. The authors would like to reiterate that
they were following in the footsteps of Benedetti and Sagan when they applied this
technique to the restriction-contraction Hopf algebra of matroids.

Acknowledgements. The authors would like to thank Carolina Benedetti and
Bruce Sagan for helpful conversations. They would also like to thank the LSU
Mathematics Department for not evicting them from their offices even after they
had graduated.

2. Preliminaries

2.1. Matroids. Matroids abstract the notion of linear independence of vectors in
a vector space. We first develop the basics of matroid theory that we will need for
the rest of this paper. We follow the notation of [Oxl11] and point to it for further
details on matroids.

Definition 2.1. A matroid M is an ordered pair (E, I) consisting of a finite set E
(called the ground set of M) and a collection I of subsets of E called independent
sets, having the following three properties:

(1) ∅ ∈ I.
(2) If I ∈ I and I ′ ⊆ I, then I ′ ∈ I.
(3) If I1 and I2 are in I and |I1| < |I2|, then there is an element e of I2 − I1

such that I1 ∪ e ∈ I.

A loop e ∈ E is an element that does not belong to any independent set.

We say two matroids M = (E, I) and N = (F,J ) are isomorphic if there exists

a bijection f : E
∼−→ F between the ground sets which preserves independent sets;

that is, if I ∈ I, then f(I) ∈ J . There are several ways to get new matroids
from old ones, which we recall below. For Definitions 2.2–2.5, let M = (E, I) and
N = (F,J ) be matroids where E and F are disjoint.

Definition 2.2. The direct sum of M and N , denoted M ⊕ N , is the matroid
(E ∪ F, {I ∪ J | I ∈ I, J ∈ J }).

Definition 2.3. Let S ⊆ E. The restriction of M to S, denoted M |S , is the
matroid (S,K) with K = {I ∈ I | I ⊆ S}.

Definition 2.4. Let e ∈ E. The deletion of e from M , denoted M \ e, is the
matroid (E − {e}, I ′) where I ′ = {I ⊆ E − {e} | I ∈ I}.
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We do not explicitly make use of deletion in this note: we only use it in the
definition of contraction below.

Definition 2.5. Let e ∈ E. The contraction of e from M , denoted M/e, is the
matroid (E − {e}, I ′′), where I ′′ = {I ⊆ E − {e} | I ∪ {e} ∈ I} if e is not a loop,
and I ′′ = I ′ (see Definition 2.4) if e is a loop.

More generally, if S ⊆ E, then the contraction of S from M , denoted M/S, is
the matroid on E−S gotten by contraction of each element s ∈ S separately (order
does not matter).

Throughout the paper, when the ground set of a matroid M = (E, I) is under-
stood, we sometimes specify M by its independent sets. In this case, we will write
M = I as in the next example.

Example 2.6. We give an example of each of the notions in the previous definitions.
Let E be the set {v1, . . . , v4} of column vectors of the matrix(

1 0 1 1
0 1 1 −1

)
.

One can check that the set I of linearly independent subsets of {v1, . . . , v4} makes
(E, I) into a matroid. In fact,

I = {∅, {v1}, {v2}, {v3}, {v4}, {v1, v2}, {v1, v3}, {v1, v4}, {v2, v3}, {v2, v4}, {v3, v4}}.
The restriction M |{v2} = {∅, {v2}}, the contraction M/v2 = {∅, {v1}, {v3}, {v4}},
and M |{v2} ⊕M/v2 = {∅, {v1}, {v2}, {v3}, {v4}, {v1, v2}, {v2, v3}, {v2, v4}}.

For the rest of the paper, we may write subsets of matroids without braces and
with their elements concatenated (like v1v2 for {v1, v2}) in hopes of alleviating some
notational woes.

We now introduce the class of matroids that we will study in this paper.

Definition 2.7. Let n,m ∈ Z≥0 with m ≤ n. The uniform matroid of rank m
on an n-element set, denoted Umn , is the matroid on an n-element set E whose
collection of independent sets I is the set of all subsets of E of cardinality less than
or equal to m.

Remark 2.8. We will sometimes denote U tI to be the uniform matroid U t|I| with

ground set I. This allows us to keep track of the ground sets of uniform matroids.

Definition 2.9. The matroid U tt for any t is called the free matroid on t elements.
The matroid U0

0 is called the trivial matroid.

Remark 2.10. The matroid in Example 2.6 is the uniform matroid U2
4 .

We will make frequent use of the following well-known result whose proof is
immediate from the definitions.

Lemma 2.11. Let Umn be a uniform matroid with ground set E, let e ∈ E, and let
S ⊆ E. We have the following formulas:

Umn |S ∼= U
min(m,|S|)
|S|

and

Umn /e
∼=
{
Um−1
n−1 if m > 0,

Umn−1 if m = 0.
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We will also make use of the following lemma.

Lemma 2.12. If A and B are disjoint finite sets, then the matroid

U
|A|
A ⊕ U |B|B = U

|A|+|B|
A

⋃
B

Proof. We start by utilizing the well known results found in [Oxl11] that the free
matroid U tt is the cycle matroid of a forest with t edges and that the direct sum of
two cycle matroids is the same as the cycle matroid for the direct sum of the two

graphs. Then U
|A|
A is the cycle matroid for a forest with |A| edges and U

|B|
B is the

cycle matroid for a forest with |B| edges. The direct sum of the two graphs is a

forest with |A|+ |B| edges, and so U
|A|
A ⊕ U |B|B = U

|A|+|B|
A

⋃
B . �

2.2. Hopf algebras. For the remainder of this paper, we fix a field k. We now
work towards the definition of a Hopf algebra.

Definition 2.13. An associative k-algebra A is a k-module together with a k-linear
map µ : A ⊗ A → A called multiplication, and a k-linear map η : k → A called a
unit. These maps must make the following diagrams commute

A⊗A⊗A A⊗A A⊗ k A k⊗A

A⊗A A A⊗A A A⊗A

id⊗µ

µ⊗id µ id⊗η

ι1

id

ι2

η⊗id

µ µ µ

where ι1 and ι2 are the inclusions.

Remark 2.14. In the definition of k-algebra above, the diagram on the left states
that µ is associative, and the diagram on the right asserts that η(1k) = 1A (the
two-sided multiplicative identity in A).

Definition 2.15. A coassociative k-coalgebra C is a k-module C together with a
k-linear operation ∆ : C → C ⊗ C called comultiplication, and a k-linear map
ε : C → k called a counit. These maps must make the following diagrams (the dual
diagrams to those in Definition 2.13) commute

C ⊗ C ⊗ C C ⊗ C C ⊗ k C k⊗ C

C ⊗ C C C ⊗ C C C ⊗ C

id⊗∆ p1 p2

∆⊗id

∆

∆ id⊗ε id

∆ ∆

ε⊗id

where p1 and p2 are the projections.

Definition 2.16. If A is a k-algebra and a k-coalgebra, then A is called a k-
bialgebra if both ∆ and ε are k-algebra homomorphisms with respect to µ and
η.

Definition 2.17. A Hopf algebra is a k-bialgebra H together with a k-linear map
S : H → H, called an antipode, such that µ ◦ (S ⊗ id) ◦∆ = µ ◦ (id⊗S) ◦∆ = η ◦ ε;
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that is, such that S makes the following diagram commute:

H⊗H H⊗H

H k H

H⊗H H⊗H

S⊗id

µ∆

ε

∆

η

id⊗S

µ

Certainly not every k-bialgebra A is a Hopf algebra. However, if A is graded and
connected, then there exists a unique antipode S making it into a Hopf algebra.

Definition 2.18. A k-bialgebra is called graded if A =
⊕
i∈Z≥0

Ai and each of µ, η,∆,

and ε are graded k-linear maps. If A0 = k, then A is said to be connected.

If H is a graded, connected bialgebra, then Takeuchi showed that H is a Hopf
algebra and gave a formula for the antipode of any element [Tak71].

Theorem 2.19 ([Tak71]). A graded, connected k-bialgebra H is a Hopf algebra,
and it has a unique antipode S whose formula is given by

(2) S =
∑
i∈Z≥0

(−1)iµi−1 ◦ π⊗i ◦∆i−1

where µ−1 = η, ∆−1 = ε, and π : H → H is the projection map defined by extending
linearly the map

π|H`
=

{
0 if ` = 0,
id if ` ≥ 1.

As stated in the introduction, this formula for S often has a great deal of cancel-
lation in examples. In this paper, we are concerned with the restriction-contraction
Hopf algebra of matroids, which we introduce in the next section. For this Hopf
algebra, we use the split-merge technique introduced in [BS16] to reinterpret (2) as
one with no cancellation.

2.3. The restriction-contraction matroid Hopf algebra. We define the main
object of study of this note, the restriction-contraction matroid Hopf algebra, which
was originally defined in [Sch94].

Definition 2.20. A minor of a matroid M is any matroid that is gotten by per-
forming a sequence of restrictions and contractions on M .

Let M be a collection of matroids closed under taking minors and direct sums,

and let M̃ be the set of isomorphism classes of matroids in M. Then direct sum

endows M̃ with an associative product [Sch94] so that we can form the monoid

algebra kM̃. We have the following result from [Sch94].

Proposition 2.21. Let M be a collection of matroids closed under direct sums

and minors, and let M = (E, I), N = (F,J ) ∈M. Let kM̃ be the monoid algebra

above with unit map η : k→ kM̃ (so that η(1k) = U0
0 ). Then kM̃ is a Hopf algebra
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with the following maps:

kM̃ ⊗ kM̃ µ−→ kM̃
(M,N) 7−→ M ⊕N,

kM̃ ∆−→ kM̃ ⊗ kM̃
M 7−→

∑
A⊆E

M |A ⊗M/A,

kM̃ ε−→ k

M 7−→
{

1k if E = ∅,
0 else.

Remark 2.22. We need to choose a suitable class of matroids M. Since, in this
paper, we are only concerned with computing the antipode for uniform matroids,
we could choose M to be the set of all uniform matroids. However, this collection
is closed under minors (see Lemma 2.11) but not under direct sums. Instead we
takeM to be any suitable collection of matroids consisting of direct sums of minors
of uniform matroids. For example, the collection of all partition matroids (those
matroids which are direct sums of uniform matroids) would suffice.

3. A cancellation-free antipode formula

Given a finite set E, an ordered set partition is a sequence of nonempty disjoint
subsets π = (B1, B2, . . . , Bk) such that ∪iBi = E. The Bi are called parts. If π is
an ordered set partition of E, then we write π � E. Sometimes, we will relax the
condition that parts must be nonempty. To denote that some of the Bi may be
empty, we write (B1, B2, . . . , Bk) �0 E. Given a matroid M = (E, I) ∈M, let ΠM

denote the set of all ordered set partitions of the ground set E.

Proposition 3.1. Let M = (E, I) ∈ M. Then for kM̃, Takeuchi’s formula (2)
takes the form:

S(M) =
∑
k≥0

(−1)k
∑

(B1,...,Bk)�E

M |B1⊕(M/B1)|B2⊕· · ·⊕(M/

k−2⋃
i=1

Bi)|Bk−1
⊕M/

k−1⋃
i=1

Bi.

Proof. First note that

∆(M) =
∑
A⊆E

M |A⊗M/A =
∑

(B1,B2)�0E

M |B1 ⊗M/B1.

Since ∆ is coassociative (see Definition 2.15), it follows that

∆k−1(M) =
∑

(B1,...,Bk)�0E

M |B1
⊗ (M/B1)|B2

⊗ · · ·⊗ (M/

k−2⋃
i=1

Bi)|Bk−1
⊗M/

k−1⋃
i=1

Bi.

Since π kills kM̃0, substituting this into (2) yields

S(M) =
∑
k≥0

(−1)k
∑

(B1,...,Bk)�E

M |B1
⊕(M/B1)|B2

⊕· · ·⊕(M/

k−2⋃
i=1

Bi)|Bk−1
⊕M/

k−1⋃
i=1

Bi,

as desired. �
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In order to produce a cancellation-free antipode formula for the restriction-

contraction matroid Hopf algebra kM̃, we will utilize the split-merge strategy in-
troduced in [BS16]. To use this method, we proceed as outlined in Section 1.2.
First we will show some examples of the computation of the Takeuchi formula for
a given ordered set partition π. That is, given an ordered set partition π, we show
how to construct the associated signless term T (π) in the antipode formula. Then
we will prove this in generality.

3.1. Computing terms in Takeuchi’s formula. Our running example will be
the uniform matroid M = U3

5 , which has ground set E = {a, b, c, d, e} and indepen-
dent sets

I = {∅, a, b, c, d, e, ab, ac, ad, ae, bc, bd, be, cd, ce, de,
abc, abd, abe, acd, ace, ade, bcd, bce, bde, cde}.

Example 3.2. Here are a few examples of computing T (π). Note that we have
dropped the outer parentheses in the notation for an ordered set partition.

• Let π1 = ab, cd, e. Then T (π1) in S(U3
5 ) is given by

M |ab ⊕ (M/a/b)|cd ⊕M/a/b/cd = {∅, a, b, ab} ⊕ {∅, c, d} ⊕ {∅} ' U2
2 ⊕ U1

2 .

• Let π2 = a, bcd, e. Then T (π2) in S(U3
5 ) is given by

M |a ⊕ (M/a)|bcd ⊕M/a/bcd = {∅, a} ⊕ {∅, b, c, d, bc, bd, cd} ⊕ {∅} ' U1
1 ⊕ U2

3 .

• Let π3 = a, bcde. Then T (π3) in S(U3
5 ) is given by

M |a ⊕M/a = {∅, a} ⊕ {∅, b, c, d, e, bc, bd, be, cd, ce, de} ' U1
1 ⊕ U2

4 .

Notice that the superscripts sum to three and the subscripts are associated to the
sizes of the parts of the partition. Below we make this precise for general π.

Theorem 3.3. Let M = Umn with ground set {etj}. Given an ordered set partition

of the ground set π = e1
1 · · · e

k1
1 , e

1
2 · · · e

k2
2 , . . . , e

1
j · · · e

kj
j , define ` to be the first integer

such that k1 + k2 + · · ·+ k` ≥ m. Then T (π) in S(M) can be computed as follows:

• If k1 + k2 + · · · + k` = m, then T (π) in S(Umn ) is Umm with ground set⋃̀
i=1

{e1
i , . . . , e

ki
i }.

• If k1 + k2 + · · ·+ k` > m, then T (π) in S(Umn ) is

U
k1+···+k`−1

k1+···+k`−1
⊕ Um−k1−k2−···−k`−1

k`

where the first summand has ground set

`−1⋃
i=1

{e1
i , . . . , e

ki
i } and the second

summand has ground set {e1
` , . . . , e

k`
` }.

Proof. Since comultiplication is associative we can apply it in any order to a direct
sum. Therefore let us first look at restriction/contraction with respect to the set

I =
⋃`−1
i=1{e1

i , . . . , e
ki
i }. The resulting matroid is

M |I ⊕M/I.

Since k1 + k2 + · · · + k`−1 < m, we know that M |I is the free matroid on the set
I. Then (M |I)|S is the free matroid on the set S for any S ⊂ I. Also (M |I)/S is
the free matroid on the set I − S for any S ⊂ I. Therefore by repeatedly applying
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Lemma 2.11, we see that if I1, . . . , I`−1 are the first `− 1 parts in π we know that
after performing all the comultiplication regarding these parts the resulting matroid
is

M |I1 ⊕ · · · ⊕M |I`−1
⊕M/I.

Note that the direct sum of free matroids is itself a free matroid on the union of
the ground sets, by Lemma 2.12. Therefore

M |I1 ⊕ · · · ⊕M |I`−1
⊕M/I ' U |I|I ⊕M/I.

Now if we apply comultiplication (restrict/contract) to the `th part, we will only be
changing the summand M/I. Again, repeated application of Lemma 2.11 results
in the following matroid:

U
|I|
I ⊕ U

m−|I|
L ⊕M/I/L.

Computing M/I/L requires us to contract |I|+ |L| elements and |I|+ |L| ≥ m.
The largest independent set in M has cardinality m, and therefore M/I/L is the
trivial matroid. Therefore,

U
|I|
I ⊕ U

m−|I|
L ⊕M/I/L ' U |I|I ⊕ U

m−|I|
L .

�

With this construction we get the following corollary.

Corollary 3.4. Given an ordered partition π, its associated signless term T (π) in
the antipode formula is determined by a pair of sets I and L, where

• I is the set of ground set elements which appear in the first ` − 1 parts of
the ordered partition, and

• L is the `th part.

3.2. Defining ι<. In this section, we will define the sign reversing involution ι<.
We get a sign reversing involution for every total ordering, <, of the ground set.
The result is a map ι< : ΠM → ΠM . After defining ι<, we will provide some
computational examples.

Start by fixing a total ordering on the ground set E, call it <. Let π =

e1
1 · · · e

k1
1 , e

1
2 · · · e

k2
2 , . . . , e

1
j · · · e

kj
j be an ordered partition of E. The involution ι<

will be applied to the parts of π starting with the first part. It will first attempt to
split the part. If successful no other parts of π are changed. If it cannot split the
part, then ι< will attempt to merge the part with the part immediately following
it. If successful no other parts of π are changed. If it can neither split nor merge
the part, then ι< will move on to the next part working left to right. If ι< is not
applicable to any part of π, then π is a fixed point of ι<.

Now we will explain what we mean by splitting and merging.

Splitting: If the part e1
i · · · e

ki
i has more than one element, ι will try to split

this part.
• If i 6= `, then the part splits. Let emax

i be the largest element in

e1
i · · · e

ki
i with respect to <. Now, replace the part e1

i · · · e
ki
i with two

parts

emax
i and e1

i · · · êmax
i · · · ekii ,

where êmax
i means that we omit this element.
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• If the part is the `th part, or in other words i = `, then the involution
ι< does not apply to this part.

Merging: If the part is a single element e1
i , we will try to merge it with the

part immediately following it.
• If e1

i > eti+1 for all 1 ≤ t ≤ ki+1, then it merges. In this case, we

replace e1
i , e

1
i+1 · · · e

ki+1

i+1 with a single part e1
i e

1
i+1 · · · e

ki+1

i+1 .

Example 3.5. Let us do an example of splitting. Consider the uniform matroid
U3

5 with ground set E = {a, b, c, d, e} with the total ordering a < b < c < d < e.
Consider the ordered partition π = ab, c, de. Thus, ` = 2. We check the parts from
left to right. Therefore we first check if ι applies to the first part. Since the first
part has more than one element, we check if splitting applies to that part. In this
case it does since i = 1 6= `. We can see that emax

i = b and therefore

ι<(ab, c, de) = b, a, c, de.

Example 3.6. For an example of merging, let us again consider U3
5 with ground

set E = {a, b, c, d, e} with the total ordering a < b < c < d < e. For this example,
we will consider the ordered partition a, c, b, de. Here, ` = 3. We attempt to merge
the first part (i = 1). We cannot since a < c. Then we attempt to merge the second
part (i = 2). In this case, we can merge because c > b. Therefore ι< applies to the
second part and

ι(a, c, b, de) = a, bc, de.

Theorem 3.7. The map ι< : ΠM → ΠM is an involution.

Proof. We will apply ι twice to an arbitrary ordered partition

π = e1
1 · · · e

k1
1 , e

1
2 · · · e

k2
2 , . . . , e

1
j · · · e

kj
j ∈ ΠM .

There are several cases.

Case One: If π is a fixed point of ι<, then ι2<(π) = ι<(ι<(π)) = ι<(π) = π.
Case Two: If π is split by ι<, then

ι<(π) = e1
1 · · · e

k1
1 , . . . , e

max
i , e1

i · · · êmax
i · · · ekii , . . . , e

1
j · · · e

kj
j

for some i where ι< did not apply to the parts 1 through i − 1. Then ι<
will not apply to the first i−1 parts of ι<(π). It will first attempt to merge

emax
i with e1

i · · · êmax
i · · · ekii . It will succeed, since by definition emax

i > eti
for all 1 ≤ t ≤ ki. Therefore, ι2<(π) = π.

Case Three: If π is merged by ι<, then this argument is very similar to that
of case two and is left to the reader to verify.

�

3.3. Characterizing the fixed points of ι<. Now we will compute the fixed
points of ι<.

Theorem 3.8. The fixed points of ι< are the ordered set partitions with the fol-
lowing two criteria:

• ki = 1 for all i 6= ` (note that k` may or may not also be 1), and
• e1 < e2 < e3 < . . . < e`−1 and e`+1 < e`+2 < . . . < ej.

Here we have suppressed the superscript because each part consists of a single
element.
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Proof. Let π = e1
1 · · · e

k1
1 , e

1
2 · · · e

k2
2 , . . . , e

1
j · · · e

kj
j be a fixed point of ι<. No part of

π splits under ι<. This occurs if and only if ki = 1 for all i except possibly the
`th part. Now that we know that all the parts are size one except possibly the `th

part, we will suppress the superscript in the partition notation and simply refer to
the ith part as ei.

No part of π can merge under ι<, if and only if ei < ei+1 for all 1 ≤ i ≤ ` − 2
and for `+ 1 ≤ i ≤ j. In other words the ground set elements that occur before the
`th part must be put in increasing order with respect to <. Similarly, so must the
elements of the ground set that occur after the `th part. �

Corollary 3.9. The fixed points of ι< are in one-to-one correspondence with pairs
I and L of subsets of the ground set E, where

• I and L are disjoint,
• |I| < m, and
• |I|+ |L| ≥ m.

Proof. Let π be a fixed point of ι<. Then π is determined by the ground set
elements that show up before the `th part, call them I, the ground set elements in
the `th part, call them L, and the ground set elements that show up after the `th

part, call them J . Any two of these sets I, L, J will determine the third set. The
restrictions in the above corollary are exactly the restrictions needed to make sure
that π is a proper partition and that L is actually the `th part of π. �

Example 3.10. Again we consider the uniform matroid U3
5 with the ordered

ground set a < b < c < d < e. Below are some (but not all) examples of ι<-
fixed points:

• a, b, cd, e
• a, b, c, d, e
• a, c, de, b
• b, c, de, a
• a, b, c, d, e

Definition 3.11. Define the sign of an ordered set partition π as

sgn(π) =

{
− if π has an odd number of parts,
+ if π has an even number of parts.

Note that sgn(π) determines whether the term that π contributes to Takeuchi’s
summation is T (π) or −T (π).

Lemma 3.12. Let π be an ordered set partition. Then sgn(ι<(π)) = −sgn(π) if π
is not a fixed point of ι<.

Proof. Suppose π is not a fixed point. Then we know sgn(ι<(π)) = −sgn(π) because
ι<(π) has exactly one more or one less part than π. �

Lemma 3.13. Let π be an ordered set partition. Then T (ι<(π)) = T (π) in S(Umn ).

Proof. Let π be any ordered set partition of the ground set of Umn . Now recall that
T (π) in S(Umn ) is determined by the pair (I, L) by Corollary 3.4. Since ι< does
not apply to the `th part, the pair corresponding to ι<(π) is the same as that of π.
Hence, T (ι<(π)) = T (π). �
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Theorem 3.14. We have the following cancellation-free formula for the antipode
of uniform matroids. Let E be the ground set for the matroid Umn . Then,

S(Umn ) =
∑
π

sgn(π)U
|I|
I ⊕ U

m−|I|
L ,

where π ranges over all ordered set partitions of E that are fixed points of ι<.

Proof. By Lemma 3.12 and Lemma 3.13 we see that ι< is a sign-reversing involution
on ΠUm

n
, the set of ordered set partitions of E. It follows that we can sum over the

fixed points of ι<. Therefore

S(Umn ) =
∑

fixed π

sgn(π)T (π)

=
∑

fixed π

sgn(π)U
|I|
I ⊕ U

m−|I|
L . (By Theorem 3.3)

�

Corollary 3.15. This summation can also be expressed in terms of I and L as

S(Umn ) =
∑
I,L

(−1)n−|L|+1U
|I|
I ⊕ U

m−|I|
L ,

where the pair I, L ranges over all pairs of subsets of E such that

• I and L are disjoint,
• |I| < m, and
• |I|+ |L| ≥ m.

Proof. Combine Corollary 3.9 and Theorem 3.14. �

4. Future Plans

In the case of the restriction-contraction Hopf algebra for matroids, the authors
believe that the above techniques can be generalized to give a cancellation free
formula for the antipode of more general matroids. They have given some consider-
ation towards computing the antipode for direct sums of matroids whose antipodes
are known. Since a decomposition formula for generic matroids is currently not
known, this is not sufficient to produce an antipode formula for all matroids. In
any case, the next step will be to attempt to utilize the techniques of this paper to
find cancellation free formulas for other families of matroids. We hope to add these
results to this document in a future edition.
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