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Goal

Consider the quiver ‚ ÝÑ ‚ ÝÑ ¨ ¨ ¨ ÝÑ ‚.

Notation:
1 Epwq - space of representations for dimension vector

w “ pw1, . . . ,wnq

2 Gpwq “ GLpw1q ˆ ¨ ¨ ¨ ˆGLpwnq

3 w˚ “ pwn, . . . ,w1q - the reverse dimension vector

Can we give a combinatorial description of the Fourier–Sato
transform:

Db
GpwqpEpwqq

T
ÝÑ Db

Gpw˚qpEpw
˚qq

F ÞÝÑ q2!q
˚
1 pFqrdim Epwqs

for simple perverse sheaves F?
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Quiver representations

Consider the type An equioriented quiver

Qn “ ‚ ÝÑ ‚ ÝÑ ¨ ¨ ¨ ÝÑ ‚.

A quiver representation is:

A finite-dimensional
C-vector space Mi for
each vertex.

A linear map xi for each
arrow.

M1 M2 ¨ ¨ ¨ Mn
x1 x2 xn´1

ReppQnq - abelian category of finite-dimensional complex
representations of Qn

Above, dimpMq “ pdim M1, dim M2, . . . , dim Mnq P Zn
ě0.
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Quiver representation varieties

Fix a dimension vector w “ pw1,w2, . . . ,wnq.

A quiver representation variety Epwq is the space of all quiver
representations for a fixed dimension vector w.

Note that Epwq is an affine variety:

Epwq » Aw1w2`w2w3`¨¨¨`wn´1wn .

Gpwq “ GLpw1q ˆ ¨ ¨ ¨ ˆGLpwnq acts on Epwq by

pg1, . . . , gnq ¨ px1, . . . , xn´1q “ pg2x1g´1
1 , . . . , gnxn´1g´1

n´1q

giving it a stratification by orbits.

Note that two points x, y P Epwq are in the same Gpwq-orbit if and
only if they are isomorphic objects of ReppQnq.
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Classifying the orbits

Theorem (Gabriel’s Theorem)
There is a bijection

tindec. objects in ReppQnqu{„
1´1
ÐÑ tpos. roots for An root systemu.

To an indecomposable representation

Rij “ 0 Ñ ¨ ¨ ¨ Ñ 0 Ñ C
vertex i

id
ÝÑ ¨ ¨ ¨

id
ÝÑ C

vertex j
Ñ 0 Ñ ¨ ¨ ¨ Ñ 0.

we associate its dimension vector, the positive root

γij “ p0, . . . , 0, 1
position i

, . . . , 1
position j

, 0, . . . , 0q.

Corollary
There is a bijection

tGpwq-orbits in Epwqu 1´1
ÐÑ Bpwq :“ tbij |

ÿ

bijγij “ wu.
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Triangular arrays

ladder

chute

Define the set Ppwq of triangular arrays of
nonnegative integers such that:

@j, the entries in the jth chute sum to wj.

Ladders are weakly decreasing.

We will write yij for the entry in the ith chute and jth column.

There is a partial order on Ppwq defined by

Y ďcomb Y 1 ðñ for all i and j,
j
ÿ

k“1

yij ď

j
ÿ

k“1

y1ij.

If Y P Ppwq and Z P Ppvq, then we can form the entry-wise sum
Y ` Z P Ppw` vq.
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Classifying the orbits combinatorially

Lemma (Achar–Kulkarni–M.)
There is a bijection

Bpwq :“ tbij |
ÿ

bijγij “ wu 1´1
ÐÑ Ppwq.

‚

‚

‚

‚

‚

‚

b11

b12 ` b22

b13 ` b23 ` b33

b12

b13 ` b23

b13

‚

‚

‚

‚

‚

‚

b11

b12

b13

b22

b33

b23
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Running Example (A3)

Let w “ p1, 1, 2q.

C C C2
0 0 1

1
2

0
0 0

C C C2
rank 1

ˆ

0
0

˙

0
1
2

1
0 0

C C C2
0 rank 1 1

0
2

0
1 0

C C C2
rank 1 rank 1 0

0
2

0
1 1
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Some observations from the combinatorics

If Y P Ppwq, we write OY for the corresponding Gpwq-orbit in Epwq.

Denote by MpYq a representation in the orbit OY .

Lemma (Achar–Kulkarni–M.)
1 OY is the unique closed orbit in Epwq if and only if Y is the

unique minimal element of Ppwq.
2 If Y P Ppwq and Z P Ppvq, then MpY ` Zq » MpYq ‘MpZq.
3 MpYq is an injective object in ReppQnq if and only if Y is

constant along ladders.
4 MpYq is a projective object in ReppQnq if and only if Y has

nonzero entries only in the last ladder.
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Fourier–Sato transform

See Kashiwara–Schapira (Section 3.7) for more details.

Can we give a combinatorial description of the Fourier–Sato
transform:

Db
GpwqpEpwqq

T
ÝÑ Db

Gpw˚qpEpw
˚qq

F ÞÝÑ q2!q
˚
1 pFqrdim Epwqs

for simple perverse sheaves F?

Epwq ˆ Epw˚q

tpx, yq P Epwq ˆ Epw˚q | Repxx, yyq ď 0u

Epwq Epw˚q

q1 q2
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Some properties and applications of the Fourier transform

Properties:

t-exact for the perverse
t-structure and sends simples
to simples.

equivalence of categories

“almost” an involution

compatible with convolution;
i.e. TpF ‹Gq “ TpFq ‹TpGq.

Applications:

Used in the 1980s to shorten
Deligne’s proof of the Weil
conjectures (Laumon).

the Springer correspondence
(Hotta–Kashiwara,
Evens–Mirković)

character sheaves (Lusztig,
Mirković)

character formula for
quantum loop algebras uses
Fourier transform on graded
quiver varieties (Nakajima)
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Combinatorial Fourier transform

Theorem (Achar–Kulkarni–M.)
There is a bijection

Ppwq T
ÝÑ Ppw˚q

defined inductively by

yn,1 ¨
¨ ¨

y1,nT
Y 1

“ τ
y1,n
n τ

y2,n´1´y1,n
n´1 ¨ ¨ ¨ τ

yn,1´yn´1,2
1

0 ¨ ¨ ¨
0

TpY 1q

where Tpaq “ a.
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Sliding at j

jth chute
Define τj : Ppwq Ñ Ppw` e1 ` . . .` ejq by:

Add 1 as far down the jth chute as possible,
drawing an impassable vertical line there.

Repeat for chutes j´ 1, . . . , 1 not crossing
lines.
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Example of T

1
0
2

0
1

0

1T 1“

1
0

0T
0
1

0“

1
0
2

0
1

0T
0
0
1

0
0

0“ τ2τ1

2
0
1

0
1

0“
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Running example

Ppwq Ppw˚q

1
1
2

0
0 0

2
1
1

0
0 0

0
1
2

1
0 0

1
1
1

1
0 0

1
0
2

0
1 0

2
0
1

0
1 0

0
0
2

0
1 1

1
0
1

0
1 1
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Main conjecture

Conjecture (Achar–Kulkarni–M.)
The bijection T : Ppwq Ñ Ppw˚q determines
T : Db

GpwqpEpwqq Ñ Db
Gpw˚qpEpw

˚qq for simple perverse sheaves;
that is,

TpICpOYqq “ ICpOTpYqq.

Proof idea:

Since TpF ‹ Gq “ TpFq ‹ TpGq, we can use induction on the
dimension vector. The proof should follow from a careful study of the
combinatorics of ‹ as well as the interplay between ďgeom and ďcomb.
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The End

Thanks!
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