Kazhdan–Lusztig polynomials of matroids

Tom Braden, Jacob P. Matherne, Nicholas Proudfoot

University of Massachusetts Amherst, University of Oregon

AMS Special Session on Combinatorics and Representation Theory of Reflection Groups: Real and Complex

- 1. Review of KL theory for Coxeter groups
- 2. KL theory for matroids

Let (W, S) be a Coxeter system. It comes equipped with

- \bullet length function ℓ
- Bruhat order \leq .

Bruhat poset

Example

Let
$$W = \mathfrak{S}_3 = \langle s_1, s_2 \mid s_1^2 = s_2^2 = 1, s_1 s_2 s_1 = s_2 s_1 s_2 \rangle$$

Bruhat poset:

First define easier R-polynomials recursively. Let $s \in S$ be such that ys < y. Then,

$$R_{x,y}(q) = \begin{cases} 1 & \text{if } x = y \\ R_{xs,ys}(q) & \text{if } xs < x \\ qR_{xs,ys}(q) + (q-1)R_{x,ys}(q) & \text{else.} \end{cases}$$

First define easier R-polynomials recursively. Let $s \in S$ be such that ys < y. Then,

$$R_{x,y}(q) = \begin{cases} 1 & \text{if } x = y \\ R_{xs,ys}(q) & \text{if } xs < x \\ qR_{xs,ys}(q) + (q-1)R_{x,ys}(q) & \text{else.} \end{cases}$$

Definition (Kazhdan-Lusztig 1979)

To each pair $x, y \in W$, there is a unique polynomial $P_{x,y}(q) \in \mathbb{Z}[q]$ such that

- $P_{x,x}(q) = 1.$
- If x < y, then deg $P_{x,y}(q) \le \frac{1}{2}(\ell(y) \ell(x) 1)$.

•
$$q^{\frac{1}{2}(\ell(w)-\ell(x))}P_{x,w}(q^{-1}) = q^{\frac{1}{2}(\ell(x)-\ell(w))}\sum_{x\leq y\leq w}R_{x,y}P_{y,w}.$$

Theorem (Polo 1999)

If p is a polynomial with non-negative integer coefficients and constant term 1, then p is a Kazhdan–Lusztig polynomial for $W = \mathfrak{S}_n$ (for some n).

 ${\it G}$ - algebraic group (connected, reductive over $\mathbb{C})$

W - its Weyl group

For each $w \in W$, a Schubert variety is a

certain subvariety $\overline{X_w}$ of the flag variety G/B.

Their intersection cohomology $\operatorname{IH}^{\bullet}(\overline{X_w})$ is encoded in the $P_{w,y}(q)$.

Basics of intersection cohomology IH^{\bullet} of a space:

- gives a measure of the complexity of the singularities of a space
- satisfies Poincaré duality for singular spaces
- isomorphic to singular cohomology for smooth spaces

Intersection cohomology has been a useful tool in geometric representation theory.

Geometric description when W is a Weyl group

Theorem (Kazhdan–Lusztig 1980)

If W is a Weyl group of an algebraic group, then

$$P_{x,y}(q) = \sum_{i \geq 0} q^i \dim \operatorname{IH}_{X_y}^{2i}(\overline{X_x})$$

This implies that the coefficients of $P_{x,y}(q)$ are non-negative.

Theorem (Kazhdan-Lusztig 1980)

If W is a Weyl group of an algebraic group, then

$$P_{x,y}(q) = \sum_{i \geq 0} q^i \dim \operatorname{IH}_{X_y}^{2i}(\overline{X_x})$$

This implies that the coefficients of $P_{x,y}(q)$ are non-negative.

Theorem (Elias–Williamson 2014)

For W an arbitrary Coxeter group, the coefficients of $P_{x,y}(q)$ are non-negative.

KLoCG	KLoM
Coxeter group	
Weyl group	
Bruhat poset	
R-polynomial	
Hecke algebra	?
Polo	
Schubert variety $\overline{X_x}$	

KLoCG	KLoM
Coxeter group	matroid
Weyl group	
Bruhat poset	
R-polynomial	
Hecke algebra	?
Polo	
Schubert variety $\overline{X_x}$	

- ground set *I* (finite set)
- a collection of distinguished subsets (independent sets, bases, closed sets, circuits, ...) satisfying some axioms

- ground set *I* (finite set)
- a collection of distinguished subsets (independent sets, bases, closed sets, circuits, ...) satisfying some axioms

Examples can be gotten from

- vectors in a vector space
- hyperplane arrangements
- graphs

- ground set *I* (finite set)
- a collection of distinguished subsets (independent sets, bases, closed sets, circuits, ...) satisfying some axioms

Examples can be gotten from

- vectors in a vector space
- hyperplane arrangements
- graphs

Some data associated to any matroid:

- a graded poset (lattice of flats)
- a characteristic polynomial

- ground set *I* (finite set)
- a collection of distinguished subsets (independent sets, bases, closed sets, circuits, ...) satisfying some axioms

Examples can be gotten from

- vectors in a vector space
- hyperplane arrangements
- graphs

Some data associated to any matroid:

- a graded poset (lattice of flats)
- a characteristic polynomial

k - field

I - finite set

 $V \subset k^{I}$ a linear subspace. This gives a hyperplane arrangement \mathcal{A} by intersecting with the coordinate hyperplanes in k^{I} .

k - field

I - finite set

 $V \subset k^{I}$ a linear subspace. This gives a hyperplane arrangement \mathcal{A} by intersecting with the coordinate hyperplanes in k^{I} .

Take $V = (x_1 + x_2 + x_3 = 0) \subset k^{\{1,2,3\}}$. After intersecting with the coordinate hyperplanes, we have

11

• Rank $\operatorname{rk} : \mathscr{P}(I) \to \mathbb{Z}_{\geq 0}$

- Rank $\operatorname{rk} : \mathscr{P}(I) \to \mathbb{Z}_{\geq 0}$
- Möbius function
 - $\mu: L(M) \to \mathbb{Z}$

- Rank $\operatorname{rk} : \mathscr{P}(I) \to \mathbb{Z}_{\geq 0}$
- Möbius function
 - $\mu: L(M) \to \mathbb{Z}$

Definition

The characteristic polynomial is

$$\chi_{\mathcal{M}}(q) = \sum_{F \in L(\mathcal{M})} \mu(F) q^{\operatorname{rk} \mathcal{M} - \operatorname{rk} F}.$$

- Rank $\operatorname{rk} : \mathscr{P}(I) \to \mathbb{Z}_{\geq 0}$
- Möbius function $\mu: L(M) \rightarrow \mathbb{Z}$

$$\chi_M(q)=q^2-3q+2$$

Definition

The characteristic polynomial is

$$\chi_{\mathcal{M}}(q) = \sum_{F \in \mathcal{L}(\mathcal{M})} \mu(F) q^{\mathrm{rk}\mathcal{M} - \mathrm{rk}F}.$$

KLoCG	KLoM
Coxeter group	matroid
Weyl group	
Bruhat poset	lattice of flats $L(M)$
R-polynomial	characteristic polynomial χ_M
Hecke algebra	?
Polo	
Schubert variety $\overline{X_x}$	

- *M_F* is a certain matroid on *F* called the **localization of** *M* **at** *F*.
- *M^F* is a certain matroid on *I* \ *F* called the restriction of *M* at *F*.

- *M_F* is a certain matroid on *F* called the **localization of** *M* **at** *F*.
- *M^F* is a certain matroid on *I* \ *F* called the restriction of *M* at *F*.

- *M_F* is a certain matroid on *F* called the **localization of** *M* **at** *F*.
- *M^F* is a certain matroid on *I* \ *F* called the restriction of *M* at *F*.

- *M_F* is a certain matroid on *F* called the **localization of** *M* **at** *F*.
- *M^F* is a certain matroid on *I* \ *F* called the restriction of *M* at *F*.

Definition of KL polynomials of matroids

Definition (Elias-Proudfoot-Wakefield 2016)

To each matroid M, we have a unique polynomial $P_M(t) \in \mathbb{Z}[t]$ such that

- If $\operatorname{rk} M = 0$, then $P_M(t) = 1$.
- If $\operatorname{rk} M > 0$, then deg $P_M(t) < \frac{1}{2} \operatorname{rk} M$.

• For every *M*,
$$t^{\operatorname{rk}M}P_M(t^{-1}) = \sum_F \chi_{M_F}(t)P_{M^F}(t)$$
.

Definition of KL polynomials of matroids

Definition (Elias-Proudfoot-Wakefield 2016)

To each matroid M, we have a unique polynomial $P_M(t) \in \mathbb{Z}[t]$ such that

- If $\operatorname{rk} M = 0$, then $P_M(t) = 1$.
- If $\operatorname{rk} M > 0$, then deg $P_M(t) < \frac{1}{2} \operatorname{rk} M$.

• For every *M*,
$$t^{\mathrm{rk}M}P_M(t^{-1}) = \sum_F \chi_{M_F}(t)P_{M^F}(t)$$
.

What do these polynomials look like?

Examples [Elias-Proudfoot-Wakefield-Young 2016]

 $M_{m,d}$ is the uniform matroid of rank d on a set of cardinality m + d.

Earlier examples: $M_{1,2}$ and $M_{1,3}$

 $M_{m,d}$ is the uniform matroid of rank d on a set of cardinality m + d.

Earlier examples: $M_{1,2}$ and $M_{1,3}$

Kazhdan–Lusztig polynomials for the uniform matroid $M_{1,d}$.

<i>d</i> =	1	2	3	4	5	6	7	8	9	10	11	12
1	1	1	1	1	1	1	1	1	1	1	1	1
t			2	5	9	14	20	27	35	44	54	65
t ²					5	21	56	120	225	385	616	936
t ³							14	84	300	825	1925	4004
t ⁴									42	330	1485	5005
t ⁵											132	1287

Examples [Elias-Proudfoot-Wakefield-Young 2016]

The braid matroid M_n is the matroid arising from the type A_n Coxeter arrangement. The braid matroid M_n is the matroid arising from the type A_n Coxeter arrangement.

Kazhdan–Lusztig polynomials for the braid matroid M_n .

<i>n</i> =	1	2	3	4	5	6	7	8	9	10
1	1	1	1	1	1	1	1	1	1	1
t				1	5	16	42	99	219	466
t ²						15	175	1225	6769	32830
t ³								735	16065	204400
t ⁴										76545

Conjecture (Elias-Proudfoot-Wakefield 2016)

For any matroid M, the coefficients of $P_M(t)$ are non-negative.

Properties

Conjecture (Elias-Proudfoot-Wakefield 2016)

For any matroid M, the coefficients of $P_M(t)$ are non-negative.

A sequence a_0, \ldots, a_r is called **log-concave** if for all 1 < i < r, we have $a_{i-1}a_{i+1} \le a_i^2$. The sequence has **no internal zeroes** if $\{i \mid a_i \neq 0\}$ is an interval.

Properties

Conjecture (Elias-Proudfoot-Wakefield 2016)

For any matroid M, the coefficients of $P_M(t)$ are non-negative.

A sequence a_0, \ldots, a_r is called **log-concave** if for all 1 < i < r, we have $a_{i-1}a_{i+1} \le a_i^2$. The sequence has **no internal zeroes** if $\{i \mid a_i \neq 0\}$ is an interval.

Conjecture (Elias-Proudfoot-Wakefield 2016)

For any matroid M, the coefficients of $P_M(t)$ form a log-concave sequence with no internal zeroes. Moreover, $P_M(t)$ is real-rooted.

Properties

Conjecture (Elias-Proudfoot-Wakefield 2016)

For any matroid M, the coefficients of $P_M(t)$ are non-negative.

A sequence a_0, \ldots, a_r is called **log-concave** if for all 1 < i < r, we have $a_{i-1}a_{i+1} \le a_i^2$. The sequence has **no internal zeroes** if $\{i \mid a_i \neq 0\}$ is an interval.

Conjecture (Elias-Proudfoot-Wakefield 2016)

For any matroid M, the coefficients of $P_M(t)$ form a log-concave sequence with no internal zeroes. Moreover, $P_M(t)$ is real-rooted.

Theorem (Adiprasito-Huh-Katz 2015)

The absolute values of the coefficients of $\chi_M(t)$ form a log-concave sequence with no internal zeroes.

Solved conjectures of Read (1968) and Rota–Heron–Welsh (1970s). 18

KLoCG	KLoM
Coxeter group	matroid
Weyl group	
Bruhat poset	lattice of flats $L(M)$
R-polynomial	characteristic polynomial χ_M
Hecke algebra	?
Polo	real-rooted
Schubert variety $\overline{X_x}$	

A representable matroid is one that arises as vectors in a vector space.

Theorem (Elias-Proudfoot-Wakefield 2016)

If M is a representable matroid, then

$$P_M(t) = \sum_{i\geq 0} t^i \dim \operatorname{IH}^{2i}(X(V)).$$

Consider the map

$$(k^{\times})^{I} \stackrel{\iota}{\longrightarrow} (k^{\times})^{I}$$

 $(z_{i})_{i\in I} \longmapsto (z_{i}^{-1})_{i\in I}.$

Define the reciprocal plane to be

$$X(V) := \overline{\iota(V \cap (k^{\times})^{I})}.$$

KLoCG	KLoM
Coxeter group	matroid
Weyl group	representable matroid
Bruhat poset	lattice of flats $L(M)$
R-polynomial	characteristic polynomial $\chi_M =$
Hecke algebra	?
Polo	real-rooted
Schubert variety $\overline{X_x}$	reciprocal plane $X(V)$

Example of a non-representable matroid

the non-Pappus matroid

Conjecture (Elias-Proudfoot-Wakefield 2016)

For any matroid M, the coefficients of $P_M(t)$ are non-negative.

Some ideas for non-negativity

Conjecture (Elias-Proudfoot-Wakefield 2016)

For any matroid M, the coefficients of $P_M(t)$ are non-negative.

We have constructed a combinatorial machine with

- Input: any matroid M
- Output: a complex of graded vector spaces $C^{\bullet}(M)$

Conjecture (Elias-Proudfoot-Wakefield 2016)

For any matroid M, the coefficients of $P_M(t)$ are non-negative.

We have constructed a combinatorial machine with

Input: any matroid M

Output: a complex of graded vector spaces $C^{\bullet}(M)$

Conjecture (Braden-M.-Proudfoot)

The complex $C^{\bullet}(M)$ has the following properties:

- $H^i(\mathcal{C}^{\bullet}(M))_j = 0$ unless i = j, and
- dim $H^i(\mathcal{C}^{\bullet}(M))_i$ is the coefficient of t^i in $P_M(t)$.

In this case, $\mathcal{C}^{\bullet}(M)$ is a two-step complex, and its degree 1 piece is

$$\begin{array}{cccc} \langle \omega_i \rangle_{i \in I} & \stackrel{\phi}{\longrightarrow} & \langle \mathbf{1}_E \rangle_{\mathrm{rk}M-\mathrm{rk}E=1} \\ \omega_i & \longmapsto & \sum_{i \notin E} \mathbf{1}_E. \end{array}$$

In this case, $\mathcal{C}^{\bullet}(M)$ is a two-step complex, and its degree 1 piece is

$$\begin{array}{cccc} \langle \omega_i \rangle_{i \in I} & \stackrel{\phi}{\longrightarrow} & \langle 1_E \rangle_{\mathrm{rk}M - \mathrm{rk}E = 1} \\ \omega_i & \longmapsto & \sum_{i \notin E} 1_E. \end{array}$$

The Euler characteristic of $C^{\bullet}(M)$ is the linear coefficient of $P_M(t)$.

The map ϕ is injective, so this coefficient is given by dim $H^1(\mathcal{C}^{\bullet}(M))_1 = \#$ coatoms - #atoms.

- Kung (1970s) studied ϕ while looking into more general 'Radon transforms' for matroids.

In this case, $\mathcal{C}^{\bullet}(M)$ is a two-step complex, and its degree 1 piece is

$$\begin{array}{rccc} \langle \omega_i \rangle_{i \in I} & \stackrel{\phi}{\longrightarrow} & \langle \mathbf{1}_E \rangle_{\mathrm{rk}M - \mathrm{rk}E = 1} \\ \omega_i & \longmapsto & \sum_{i \notin E} \mathbf{1}_E. \end{array}$$

The Euler characteristic of $C^{\bullet}(M)$ is the linear coefficient of $P_M(t)$.

The map ϕ is injective, so this coefficient is given by dim $H^1(\mathcal{C}^{\bullet}(M))_1 = \#$ coatoms - #atoms.

- Kung (1970s) studied ϕ while looking into more general 'Radon transforms' for matroids.

Corollary (Elias-Proudfoot-Wakefield 2016, Braden-M.-Proudfoot)

For any matroid M, the linear term of $P_M(t)$ is non-negative.

Theorem (Braden-M.-Proudfoot)

The degree 2 part of our complex $C^{\bullet}(M)$ computes $\mathrm{IH}^{4}(X(V))$.

Corollary (Braden-M.-Proudfoot)

For any matroid M, the quadratic term of $P_M(t)$ is non-negative.

Theorem (Braden-M.-Proudfoot)

The degree 2 part of our complex $C^{\bullet}(M)$ computes $\mathrm{IH}^{4}(X(V))$.

Corollary (Braden-M.-Proudfoot)

For any matroid M, the quadratic term of $P_M(t)$ is non-negative.

Thanks!