Kazhdan-Lusztig polynomials of matroids

Tom Braden, Jacob P. Matherne, Nicholas Proudfoot

University of Massachusetts Amherst, University of Oregon

AMS Special Session on Combinatorics and Representation Theory of Reflection Groups: Real and Complex

Outline

1. Review of KL theory for Coxeter groups
2. KL theory for matroids

Coxeter system

Let (W, S) be a Coxeter system. It comes equipped with

- length function ℓ
- Bruhat order \leq.

Bruhat poset

Example

$$
\text { Let } W=\mathfrak{S}_{3}=\left\langle s_{1}, s_{2} \mid s_{1}^{2}=s_{2}^{2}=1, s_{1} s_{2} s_{1}=s_{2} s_{1} s_{2}\right\rangle
$$

Bruhat poset:

R-polynomials and KL polynomials

First define easier R-polynomials recursively. Let $s \in S$ be such that $y s<y$. Then,

$$
R_{x, y}(q)= \begin{cases}1 & \text { if } x=y \\ R_{x s, y s}(q) & \text { if } x s<x \\ q R_{x s, y s}(q)+(q-1) R_{x, y s}(q) & \text { else }\end{cases}
$$

R-polynomials and KL polynomials

First define easier R-polynomials recursively. Let $s \in S$ be such that $y s<y$. Then,

$$
R_{x, y}(q)= \begin{cases}1 & \text { if } x=y \\ R_{x s, y s}(q) & \text { if } x s<x \\ q R_{x s, y s}(q)+(q-1) R_{x, y s}(q) & \text { else }\end{cases}
$$

Definition (Kazhdan-Lusztig 1979)

To each pair $x, y \in W$, there is a unique polynomial
$P_{x, y}(q) \in \mathbb{Z}[q]$ such that

- $P_{x, x}(q)=1$.
- If $x<y$, then $\operatorname{deg} P_{x, y}(q) \leq \frac{1}{2}(\ell(y)-\ell(x)-1)$.
- $q^{\frac{1}{2}(\ell(w)-\ell(x))} P_{x, w}\left(q^{-1}\right)=q^{\frac{1}{2}(\ell(x)-\ell(w))} \sum_{x \leq y \leq w} R_{x, y} P_{y, w}$.

Which polynomials do we get?

Theorem (Polo 1999)

If p is a polynomial with non-negative integer coefficients and constant term 1, then p is a Kazhdan-Lusztig polynomial for $W=\mathfrak{S}_{n}$ (for some n).

Schubert varieties

G - algebraic group (connected, reductive over \mathbb{C})
W - its Weyl group
For each $w \in W$, a Schubert variety is a
certain subvariety $\overline{X_{w}}$ of the flag variety G / B.
Their intersection cohomology $\mathrm{IH}^{\bullet}\left(\overline{X_{w}}\right)$ is encoded in the $P_{w, y}(q)$.

Basics of intersection cohomology

Basics of intersection cohomology IH^{\bullet} of a space:

- gives a measure of the complexity of the singularities of a space
- satisfies Poincaré duality for singular spaces
- isomorphic to singular cohomology for smooth spaces

Intersection cohomology has been a useful tool in geometric representation theory.

Geometric description when W is a Weyl group

Theorem (Kazhdan-Lusztig 1980)

If W is a Weyl group of an algebraic group, then

$$
P_{x, y}(q)=\sum_{i \geq 0} q^{i} \operatorname{dim} \mathrm{IH}_{X_{y}}^{2 i}\left(\overline{X_{x}}\right)
$$

This implies that the coefficients of $P_{x, y}(q)$ are non-negative.

Geometric description when W is a Weyl group

Theorem (Kazhdan-Lusztig 1980)

If W is a Weyl group of an algebraic group, then

$$
P_{x, y}(q)=\sum_{i \geq 0} q^{i} \operatorname{dim} \mathrm{IH}_{X_{y}}^{2 i}\left(\overline{X_{x}}\right)
$$

This implies that the coefficients of $P_{x, y}(q)$ are non-negative.
Theorem (Elias-Williamson 2014)
For W an arbitrary Coxeter group, the coefficients of $P_{x, y}(q)$ are non-negative.

Comparison

KLoCG	KLoM
Coxeter group	
\quad Weyl group	
Bruhat poset	
R-polynomial	
Hecke algebra	$?$
Polo	
Schubert variety $\overline{X_{x}}$	

Comparison

KLoCG	KLoM
Coxeter group	matroid
\quad Weyl group	
Bruhat poset	
R-polynomial Hecke algebra	$?$
Polo	
Schubert variety $\overline{X_{x}}$	

Matroids

A matroid is a gadget that generalizes the notion of linear (in)dependence in a vector space. It has a

- ground set I (finite set)
- a collection of distinguished subsets (independent sets, bases, closed sets, circuits, ...) satisfying some axioms

Matroids

A matroid is a gadget that generalizes the notion of linear (in)dependence in a vector space. It has a

- ground set / (finite set)
- a collection of distinguished subsets (independent sets, bases, closed sets, circuits, ...) satisfying some axioms

Examples can be gotten from

- vectors in a vector space
- hyperplane arrangements
- graphs

Matroids

A matroid is a gadget that generalizes the notion of linear
(in)dependence in a vector space. It has a

- ground set / (finite set)
- a collection of distinguished subsets (independent sets, bases, closed sets, circuits, ...) satisfying some axioms

Examples can be gotten from

- vectors in a vector space
- hyperplane arrangements
- graphs

Some data associated to any matroid:

- a graded poset (lattice of flats)
- a characteristic polynomial

Matroids

A matroid is a gadget that generalizes the notion of linear
(in)dependence in a vector space. It has a

- ground set / (finite set)
- a collection of distinguished subsets (independent sets, bases, closed sets, circuits, ...) satisfying some axioms

Examples can be gotten from

- vectors in a vector space
- hyperplane arrangements
- graphs

Some data associated to any matroid:

- a graded poset (lattice of flats)
- a characteristic polynomial

Example of a matroid

k - field
I - finite set
$V \subset k^{\prime}$ a linear subspace. This gives a hyperplane arrangement \mathcal{A} by intersecting with the coordinate hyperplanes in k^{\prime}.

Example of a matroid

k - field
I - finite set
$V \subset k^{\prime}$ a linear subspace. This gives a hyperplane arrangement \mathcal{A} by intersecting with the coordinate hyperplanes in k^{\prime}.

Take $V=\left(x_{1}+x_{2}+x_{3}=0\right) \subset k^{\{1,2,3\}}$. After intersecting with the coordinate hyperplanes, we have

Characteristic polynomial of a matroid

Characteristic polynomial of a matroid

- Rank rk: $\mathscr{P}(I) \rightarrow \mathbb{Z}_{\geq 0}$

Characteristic polynomial of a matroid

- Rank rk : $\mathscr{P}(I) \rightarrow \mathbb{Z}_{\geq 0}$
- Möbius function

$$
\mu: L(M) \rightarrow \mathbb{Z}
$$

Characteristic polynomial of a matroid

- Rank rk: $\mathscr{P}(I) \rightarrow \mathbb{Z}_{\geq 0}$
- Möbius function

$$
\mu: L(M) \rightarrow \mathbb{Z}
$$

Definition

The characteristic polynomial is

$$
\chi_{M}(q)=\sum_{F \in L(M)} \mu(F) q^{\mathrm{rk} M-\mathrm{rk} F}
$$

Characteristic polynomial of a matroid

- Rank rk: $\mathscr{P}(I) \rightarrow \mathbb{Z}_{\geq 0}$
- Möbius function

$$
\chi_{M}(q)=q^{2}-3 q+2
$$

$$
\mu: L(M) \rightarrow \mathbb{Z}
$$

Definition

The characteristic polynomial is

$$
\chi_{M}(q)=\sum_{F \in L(M)} \mu(F) q^{\mathrm{rk} M-\mathrm{rk} F}
$$

Comparison

KLoCG	KLoM
Coxeter group	matroid
\quad Weyl group	
Bruhat poset	lattice of flats $L(M)$
R-polynomial	characteristic polynomial χ_{M}
Hecke algebra	?
Polo	
Schubert variety $\overline{X_{x}}$	

Localization and restriction of matroids

For any flat $F \in L(M)$, we can define two new matroids:

- M_{F} is a certain matroid on F called the localization of M at F.
- M^{F} is a certain matroid on $I \backslash F$ called the restriction of M at F.

Localization and restriction of matroids

For any flat $F \in L(M)$, we can define two new matroids:

- M_{F} is a certain matroid on F called the localization of M at F.
- M^{F} is a certain matroid on $I \backslash F$ called the restriction of M at F.

Localization and restriction of matroids

For any flat $F \in L(M)$, we can define two new matroids:

- M_{F} is a certain matroid on F called the localization of M at F.
- M^{F} is a certain matroid on $I \backslash F$ called the restriction of M at F.

Localization and restriction of matroids

For any flat $F \in L(M)$, we can define two new matroids:

- M_{F} is a certain matroid on F called the localization of M at F.
- M^{F} is a certain matroid on $I \backslash F$ called the restriction of M at F.

Definition of KL polynomials of matroids

Definition (Elias-Proudfoot-Wakefield 2016)

To each matroid M, we have a unique polynomial $P_{M}(t) \in \mathbb{Z}[t]$ such that

- If $\operatorname{rk} M=0$, then $P_{M}(t)=1$.
- If $\operatorname{rkM}>0$, then $\operatorname{deg} P_{M}(t)<\frac{1}{2} \mathrm{rk} M$.
- For every $M, t^{\mathrm{rk} M} P_{M}\left(t^{-1}\right)=\sum_{F} \chi_{M_{F}}(t) P_{M^{F}}(t)$.

Definition of KL polynomials of matroids

Definition (Elias-Proudfoot-Wakefield 2016)

To each matroid M, we have a unique polynomial $P_{M}(t) \in \mathbb{Z}[t]$ such that

- If $\operatorname{rkM}=0$, then $P_{M}(t)=1$.
- If $\operatorname{rk} M>0$, then $\operatorname{deg} P_{M}(t)<\frac{1}{2} \mathrm{rk} M$.
- For every $M, t^{\mathrm{rk} M} P_{M}\left(t^{-1}\right)=\sum_{F} \chi_{M_{F}}(t) P_{M^{F}}(t)$.

What do these polynomials look like?

Examples [Elias-Proudfoot-Wakefield-Young 2016]

$M_{m, d}$ is the uniform matroid of rank d on a set of cardinality $m+d$.

Earlier examples: $M_{1,2}$ and $M_{1,3}$

Examples [Elias-Proudfoot-Wakefield-Young 2016]

$M_{m, d}$ is the uniform matroid of rank d on a set of cardinality $m+d$.

Earlier examples: $M_{1,2}$ and $M_{1,3}$
Kazhdan-Lusztig polynomials for the uniform matroid $M_{1, d}$.

$d=$	1	2	3	4	5	6	7	8	9	10	11	12
1	1	1	1	1	1	1	1	1	1	1	1	1
t			2	5	9	14	20	27	35	44	54	65
t^{2}					5	21	56	120	225	385	616	936
t^{3}							14	84	300	825	1925	4004
t^{4}									42	330	1485	5005
t^{5}											132	1287

Examples [Elias-Proudfoot-Wakefield-Young 2016]

The braid matroid M_{n} is the matroid arising from the type A_{n} Coxeter arrangement.

Examples [Elias-Proudfoot-Wakefield-Young 2016]

The braid matroid M_{n} is the matroid arising from the type A_{n}
Coxeter arrangement.
Kazhdan-Lusztig polynomials for the braid matroid M_{n}.

$n=$	1	2	3	4	5	6	7	8	9	10
1	1	1	1	1	1	1	1	1	1	1
t				1	5	16	42	99	219	466
t^{2}						15	175	1225	6769	32830
t^{3}								735	16065	204400
t^{4}										76545

Properties

Conjecture (Elias-Proudfoot-Wakefield 2016)

For any matroid M, the coefficients of $P_{M}(t)$ are non-negative.

Properties

Conjecture (Elias-Proudfoot-Wakefield 2016)

For any matroid M, the coefficients of $P_{M}(t)$ are non-negative.

A sequence a_{0}, \ldots, a_{r} is called log-concave if for all $1<i<r$, we have $a_{i-1} a_{i+1} \leq a_{i}^{2}$. The sequence has no internal zeroes if $\left\{i \mid a_{i} \neq 0\right\}$ is an interval.

Properties

Conjecture (Elias-Proudfoot-Wakefield 2016)

For any matroid M, the coefficients of $P_{M}(t)$ are non-negative.

A sequence a_{0}, \ldots, a_{r} is called log-concave if for all $1<i<r$, we have $a_{i-1} a_{i+1} \leq a_{i}^{2}$. The sequence has no internal zeroes if $\left\{i \mid a_{i} \neq 0\right\}$ is an interval.

Conjecture (Elias-Proudfoot-Wakefield 2016)

For any matroid M, the coefficients of $P_{M}(t)$ form a log-concave sequence with no internal zeroes. Moreover, $P_{M}(t)$ is real-rooted.

Properties

Conjecture (Elias-Proudfoot-Wakefield 2016)

For any matroid M, the coefficients of $P_{M}(t)$ are non-negative.

A sequence a_{0}, \ldots, a_{r} is called log-concave if for all $1<i<r$, we have $a_{i-1} a_{i+1} \leq a_{i}^{2}$. The sequence has no internal zeroes if $\left\{i \mid a_{i} \neq 0\right\}$ is an interval.

Conjecture (Elias-Proudfoot-Wakefield 2016)

For any matroid M, the coefficients of $P_{M}(t)$ form a log-concave sequence with no internal zeroes. Moreover, $P_{M}(t)$ is real-rooted.

Theorem (Adiprasito-Huh-Katz 2015)

The absolute values of the coefficients of $\chi_{M}(t)$ form a log-concave sequence with no internal zeroes.

Solved conjectures of Read (1968) and Rota-Heron-Welsh (1970s).

Comparison

KLoCG	KLoM
Coxeter group	matroid
\quad Weyl group	
Bruhat poset	lattice of flats $L(M)$
R-polynomial	characteristic polynomial χ_{M}
Hecke algebra	?
Polo	real-rooted
Schubert variety $\overline{X_{x}}$	

Representable matroids

A representable matroid is one that arises as vectors in a vector space.

Theorem (Elias-Proudfoot-Wakefield 2016)

If M is a representable matroid, then

$$
P_{M}(t)=\sum_{i \geq 0} t^{i} \operatorname{dim} \mathrm{IH}^{2 i}(X(V))
$$

Reciprocal plane

Consider the map

$$
\begin{aligned}
&\left(k^{\times}\right)^{\prime} \xrightarrow{\iota}\left(k^{\times}\right)^{\prime} \\
&\left(z_{i}\right)_{i \in 1} \longmapsto \\
&\left(z_{i}^{-1}\right)_{i \in I} .
\end{aligned}
$$

Define the reciprocal plane to be

$$
X(V):=\overline{\iota\left(V \cap\left(k^{\times}\right)^{\prime}\right)}
$$

Comparison

KLoCG	KLoM
Coxeter group	matroid
\quad Weyl group	\quad representable matroid
Bruhat poset	lattice of flats $L(M)$
R-polynomial	characteristic polynomial $\chi_{M}=$
Hecke algebra	?
Polo	real-rooted
Schubert variety $\overline{X_{X}}$	reciprocal plane $X(V)$

Example of a non-representable matroid

the non-Pappus matroid

Some ideas for non-negativity

Conjecture (Elias-Proudfoot-Wakefield 2016)

For any matroid M, the coefficients of $P_{M}(t)$ are non-negative.

Some ideas for non-negativity

Conjecture (Elias-Proudfoot-Wakefield 2016)

For any matroid M, the coefficients of $P_{M}(t)$ are non-negative.

We have constructed a combinatorial machine with
Input: any matroid M
Output: a complex of graded vector spaces $\mathcal{C}^{\bullet}(M)$

Some ideas for non-negativity

Conjecture (Elias-Proudfoot-Wakefield 2016)

For any matroid M, the coefficients of $P_{M}(t)$ are non-negative.
We have constructed a combinatorial machine with
Input: any matroid M
Output: a complex of graded vector spaces $\mathcal{C}^{\bullet}(M)$
Conjecture (Braden-M.-Proudfoot)
The complex $\mathcal{C}^{\bullet}(M)$ has the following properties:

- $H^{i}\left(C^{\bullet}(M)\right)_{j}=0$ unless $i=j$, and
- $\operatorname{dim} H^{i}\left(\mathcal{C}^{\bullet}(M)\right)_{i}$ is the coefficient of t^{i} in $P_{M}(t)$.

The complex for IH^{2}

In this case, $\mathcal{C}^{\bullet}(M)$ is a two-step complex, and its degree 1 piece is

$$
\begin{aligned}
\left\langle\omega_{i}\right\rangle_{i \in I} & \xrightarrow{\phi}\left\langle 1_{E}\right\rangle_{\mathrm{rk} M-\mathrm{rk} E=1} \\
\omega_{i} & \longmapsto
\end{aligned} \sum_{i \notin E} 1_{E} .
$$

The complex for IH^{2}

In this case, $\mathcal{C}^{\bullet}(M)$ is a two-step complex, and its degree 1 piece is

$$
\begin{aligned}
\left\langle\omega_{i}\right\rangle_{i \in I} & \xrightarrow{\phi}\left\langle 1_{E}\right\rangle_{\mathrm{rk} M-\mathrm{rk} E=1} \\
\omega_{i} & \longmapsto \sum_{i \notin E} 1_{E} .
\end{aligned}
$$

The Euler characteristic of $\mathcal{C}^{\bullet}(M)$ is the linear coefficient of $P_{M}(t)$.
The map ϕ is injective, so this coefficient is given by $\operatorname{dim} H^{1}\left(\mathcal{C}^{\bullet}(M)\right)_{1}=\#$ coatoms $-\#$ atoms.

- Kung (1970s) studied ϕ while looking into more general 'Radon transforms' for matroids.

The complex for IH^{2}

In this case, $\mathcal{C}^{\bullet}(M)$ is a two-step complex, and its degree 1 piece is

$$
\begin{aligned}
\left\langle\omega_{i}\right\rangle_{i \in I} & \xrightarrow{\phi}\left\langle 1_{E}\right\rangle_{\mathrm{rk} M-\mathrm{rk} E=1} \\
\omega_{i} & \longmapsto \sum_{i \notin E} 1_{E} .
\end{aligned}
$$

The Euler characteristic of $\mathcal{C}^{\bullet}(M)$ is the linear coefficient of $P_{M}(t)$.
The map ϕ is injective, so this coefficient is given by $\operatorname{dim} H^{1}\left(\mathcal{C}^{\bullet}(M)\right)_{1}=\#$ coatoms $-\#$ atoms.

- Kung (1970s) studied ϕ while looking into more general 'Radon transforms' for matroids.
Corollary (Elias-Proudfoot-Wakefield 2016, Braden-M.Proudfoot)
For any matroid M, the linear term of $P_{M}(t)$ is non-negative.

The complex for IH^{4}

Theorem (Braden-M.-Proudfoot)

The degree 2 part of our complex $\mathcal{C}^{\bullet}(M)$ computes $\mathrm{IH}^{4}(X(V))$.

Corollary (Braden-M.-Proudfoot)
For any matroid M, the quadratic term of $P_{M}(t)$ is non-negative.

The complex for IH^{4}

Theorem (Braden-M.-Proudfoot)

The degree 2 part of our complex $\mathcal{C}^{\bullet}(M)$ computes $\mathrm{IH}^{4}(X(V))$.

Corollary (Braden-M.-Proudfoot)
For any matroid M, the quadratic term of $P_{M}(t)$ is non-negative.

Thanks!

