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Coxeter system

Let (W ,S) be a Coxeter system. It comes equipped with

• length function `

• Bruhat order ≤.
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Bruhat poset

Example

Let W = S3 = 〈s1, s2 | s2
1 = s2

2 = 1, s1s2s1 = s2s1s2〉

Bruhat poset:

s1s2s1

s1s2 s2s1

s1 s2

e
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R-polynomials and KL polynomials

First define easier R-polynomials recursively. Let s ∈ S be such

that ys < y . Then,

Rx ,y (q) =


1 if x = y

Rxs,ys(q) if xs < x

qRxs,ys(q) + (q − 1)Rx ,ys(q) else.

Definition (Kazhdan–Lusztig 1979)

To each pair x , y ∈W , there is a unique polynomial

Px ,y (q) ∈ Z[q] such that

• Px ,x(q) = 1.

• If x < y , then degPx ,y (q) ≤ 1
2 (`(y)− `(x)− 1).

• q
1
2

(`(w)−`(x))Px ,w (q−1) = q
1
2

(`(x)−`(w))
∑

x≤y≤w
Rx ,yPy ,w .
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Which polynomials do we get?

Theorem (Polo 1999)

If p is a polynomial with non-negative integer coefficients and

constant term 1, then p is a Kazhdan–Lusztig polynomial for

W = Sn (for some n).
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Schubert varieties

G - algebraic group (connected, reductive over C)

W - its Weyl group

For each w ∈W , a Schubert variety is a

certain subvariety Xw of the flag variety G/B.

Their intersection cohomology IH•(Xw ) is encoded in the Pw ,y (q).
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Basics of intersection cohomology

Basics of intersection cohomology IH• of a space:

• gives a measure of the complexity of the singularities of a

space

• satisfies Poincaré duality for singular spaces

• isomorphic to singular cohomology for smooth spaces

Intersection cohomology has been a useful tool in geometric

representation theory.
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Geometric description when W is a Weyl group

Theorem (Kazhdan–Lusztig 1980)

If W is a Weyl group of an algebraic group, then

Px ,y (q) =
∑
i≥0

qi dim IH2i
Xy

(Xx)

This implies that the coefficients of Px ,y (q) are non-negative.

Theorem (Elias–Williamson 2014)

For W an arbitrary Coxeter group, the coefficients of Px ,y (q) are

non-negative.
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Comparison

KLoCG KLoM

Coxeter group

Weyl group

Bruhat poset

R-polynomial

Hecke algebra ?

Polo

Schubert variety Xx

9



Comparison

KLoCG KLoM

Coxeter group matroid

Weyl group

Bruhat poset

R-polynomial

Hecke algebra ?

Polo

Schubert variety Xx
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Matroids

A matroid is a gadget that generalizes the notion of linear

(in)dependence in a vector space. It has a

- ground set I (finite set)

- a collection of distinguished subsets (independent sets, bases,

closed sets, circuits, . . . ) satisfying some axioms

Examples can be gotten from

• vectors in a vector space

•
• graphs

Some data associated to any matroid:

• a graded poset (lattice of flats)

• a characteristic polynomial
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Example of a matroid

k - field

I - finite set

V ⊂ k I a linear subspace. This gives a hyperplane arrangement A
by intersecting with the coordinate hyperplanes in k I .

Take V = (x1 + x2 + x3 = 0) ⊂ k{1,2,3}. After intersecting with the

coordinate hyperplanes, we have

x2 = 0x1 = 0

x3 = 0

V

123

1 2 3

∅
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Characteristic polynomial of a matroid

21

3

V

123

1 2 3

∅

• Rank rk : P(I )→ Z≥0

• Möbius function

µ : L(M)→ Z
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Characteristic polynomial of a matroid

21

3

V

123(2)

1(1) 2(1) 3(1)

∅(0)

• Rank rk : P(I )→ Z≥0

• Möbius function

µ : L(M)→ Z
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Characteristic polynomial of a matroid

21

3

V

123(2)(2)

1(1)(−1) 2(1)(−1) 3(1)(−1)

∅(0)(1)
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Characteristic polynomial of a matroid

21

3

V

123(2)(2)

1(1)(−1) 2(1)(−1) 3(1)(−1)

∅(0)(1)

• Rank rk : P(I )→ Z≥0

• Möbius function
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Definition

The characteristic polynomial is

χM(q) =
∑

F∈L(M)

µ(F )qrkM−rkF .
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Characteristic polynomial of a matroid

21

3

V

123(2)(2)

1(1)(−1) 2(1)(−1) 3(1)(−1)

∅(0)(1)

• Rank rk : P(I )→ Z≥0

• Möbius function

µ : L(M)→ Z
χM(q) = q2 − 3q + 2

Definition

The characteristic polynomial is

χM(q) =
∑

F∈L(M)

µ(F )qrkM−rkF .
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Comparison

KLoCG KLoM

Coxeter group matroid

Weyl group

Bruhat poset lattice of flats L(M)

R-polynomial characteristic polynomial χM

Hecke algebra ?

Polo

Schubert variety Xx
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Localization and restriction of matroids

For any flat F ∈ L(M), we can define two new matroids:

• MF is a certain matroid on F called the localization of M at

F .

• MF is a certain matroid on I \ F called the restriction of M

at F .

∅

1 2 3 4

12 13 14 23 24 34

1234L(M) L(M13)

∅

1 3

13

L(M13)

∅

24
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Definition of KL polynomials of matroids

Definition (Elias–Proudfoot–Wakefield 2016)

To each matroid M, we have a unique polynomial PM(t) ∈ Z[t]

such that

• If rkM = 0, then PM(t) = 1.

• If rkM > 0, then degPM(t) < 1
2rkM.

• For every M, trkMPM(t−1) =
∑
F

χMF
(t)PMF (t).

What do these polynomials look like?
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Examples [Elias–Proudfoot–Wakefield–Young 2016]

Mm,d is the uniform matroid of rank d on a set of cardinality

m + d .

Earlier examples: M1,2 and M1,3

Kazhdan–Lusztig polynomials for the uniform matroid M1,d .

d = 1 2 3 4 5 6 7 8 9 10 11 12

1 1 1 1 1 1 1 1 1 1 1 1 1

t 2 5 9 14 20 27 35 44 54 65

t2 5 21 56 120 225 385 616 936

t3 14 84 300 825 1925 4004

t4 42 330 1485 5005

t5 132 1287
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Examples [Elias–Proudfoot–Wakefield–Young 2016]

The braid matroid Mn is the matroid arising from the type An

Coxeter arrangement.

Kazhdan–Lusztig polynomials for the braid matroid Mn.

n = 1 2 3 4 5 6 7 8 9 10

1 1 1 1 1 1 1 1 1 1 1

t 1 5 16 42 99 219 466

t2 15 175 1225 6769 32830

t3 735 16065 204400

t4 76545
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Properties

Conjecture (Elias–Proudfoot–Wakefield 2016)

For any matroid M, the coefficients of PM(t) are non-negative.

A sequence a0, . . . , ar is called log-concave if for all 1 < i < r , we

have ai−1ai+1 ≤ a2
i . The sequence has no internal zeroes if

{i | ai 6= 0} is an interval.

Conjecture (Elias–Proudfoot–Wakefield 2016)

For any matroid M, the coefficients of PM(t) form a log-concave

sequence with no internal zeroes. Moreover, PM(t) is real-rooted.

Theorem (Adiprasito–Huh–Katz 2015)

The absolute values of the coefficients of χM(t) form a

log-concave sequence with no internal zeroes.

Solved conjectures of Read (1968) and Rota–Heron–Welsh (1970s).
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Representable matroids

A representable matroid is one that arises as vectors in a vector

space.

Theorem (Elias–Proudfoot–Wakefield 2016)

If M is a representable matroid, then

PM(t) =
∑
i≥0

t i dim IH2i (X (V )).
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Reciprocal plane

Consider the map

(k×)I
ι−→ (k×)I

(zi )i∈I 7−→ (z−1
i )i∈I .

Define the reciprocal plane to be

X (V ) := ι(V ∩ (k×)I ).

21



Comparison

KLoCG KLoM

Coxeter group matroid

Weyl group representable matroid

Bruhat poset lattice of flats L(M)

R-polynomial characteristic polynomial χM =

Hecke algebra ?

Polo real-rooted

Schubert variety Xx reciprocal plane X (V )
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Example of a non-representable matroid

g h i

a

b

c

d
e

f

the non-Pappus matroid
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Some ideas for non-negativity

Conjecture (Elias–Proudfoot–Wakefield 2016)

For any matroid M, the coefficients of PM(t) are non-negative.

We have constructed a combinatorial machine with

Input: any matroid M

Output: a complex of graded vector spaces C•(M)

Conjecture (Braden–M.–Proudfoot)

The complex C•(M) has the following properties:

• H i (C•(M))j = 0 unless i = j , and

• dimH i (C•(M))i is the coefficient of t i in PM(t).
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The complex for IH2

In this case, C•(M) is a two-step complex, and its degree 1 piece is

〈ωi 〉i∈I
φ−→ 〈1E 〉rkM−rkE=1

ωi 7−→
∑
i 6∈E

1E .

The Euler characteristic of C•(M) is the linear coefficient of PM(t).

The map φ is injective, so this coefficient is given by

dimH1(C•(M))1 = #coatoms−#atoms.

- Kung (1970s) studied φ while looking into more general

‘Radon transforms’ for matroids.

Corollary (Elias–Proudfoot–Wakefield 2016, Braden–M.–

Proudfoot)

For any matroid M, the linear term of PM(t) is non-negative.

25



The complex for IH2

In this case, C•(M) is a two-step complex, and its degree 1 piece is

〈ωi 〉i∈I
φ−→ 〈1E 〉rkM−rkE=1

ωi 7−→
∑
i 6∈E

1E .

The Euler characteristic of C•(M) is the linear coefficient of PM(t).

The map φ is injective, so this coefficient is given by

dimH1(C•(M))1 = #coatoms−#atoms.

- Kung (1970s) studied φ while looking into more general

‘Radon transforms’ for matroids.

Corollary (Elias–Proudfoot–Wakefield 2016, Braden–M.–

Proudfoot)

For any matroid M, the linear term of PM(t) is non-negative.

25



The complex for IH2

In this case, C•(M) is a two-step complex, and its degree 1 piece is

〈ωi 〉i∈I
φ−→ 〈1E 〉rkM−rkE=1

ωi 7−→
∑
i 6∈E

1E .

The Euler characteristic of C•(M) is the linear coefficient of PM(t).

The map φ is injective, so this coefficient is given by

dimH1(C•(M))1 = #coatoms−#atoms.

- Kung (1970s) studied φ while looking into more general

‘Radon transforms’ for matroids.

Corollary (Elias–Proudfoot–Wakefield 2016, Braden–M.–

Proudfoot)

For any matroid M, the linear term of PM(t) is non-negative. 25



The complex for IH4

Theorem (Braden–M.–Proudfoot)

The degree 2 part of our complex C•(M) computes IH4(X (V )).

Corollary (Braden–M.–Proudfoot)

For any matroid M, the quadratic term of PM(t) is non-negative.

Thanks!
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