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Coxeter system

Let (W,S) be a Coxeter system. It comes equipped with

e length function ¢
e Bruhat order <.



Example
Let W =63 = (s1,% | 512 = 522 =1,51551 = $2515)

Bruhat poset:

515251

PN



R-polynomials and KL polynomials

First define easier R-polynomials recursively. Let s € S be such
that ys < y. Then,
1 ifx=y
Ruy(q) = 4 Rusys(q) if xs < x
qRxs,ys(q) + (g — 1)Rxys(q) else.



R-polynomials and KL polynomials

First define easier R-polynomials recursively. Let s € S be such
that ys < y. Then,
1 if x=y
Ruy(q) = 4 Rusys(q) if xs < x
qRxsys(q) + (g — 1)Rxys(q) else.

Definition (Kazhdan—Lusztig 1979)
To each pair x,y € W, there is a unique polynomial
Px.y(q) € Z[q] such that

o P.y(q)=1.
e If x <y, then deg Py ,(q) < ({(y )—e( ) —1).
o q%(f(w)fé(x))nyw(q—l) = gz~ Z Rx.y Py.w-

x<y<w



Which polynomials do we get?

Theorem (Polo 1999)

If p is a polynomial with non-negative integer coefficients and

constant term 1, then p is a Kazhdan—Lusztig polynomial for
W = &, (for some n).



Schubert varieties

G - algebraic group (connected, reductive over C)
W - its Weyl group

For each w € W, a Schubert variety is a
certain subvariety X,, of the flag variety G/B.

Their intersection cohomology IH*(X,,) is encoded in the P, ,(q).



Basics of intersection cohomology

Basics of intersection cohomology TH® of a space:

e gives a measure of the complexity of the singularities of a
space

e satisfies Poincaré duality for singular spaces

e isomorphic to singular cohomology for smooth spaces

Intersection cohomology has been a useful tool in geometric
representation theory.



Geometric description when W is a Weyl group

Theorem (Kazhdan—Lusztig 1980)
If W is a Weyl group of an algebraic group, then

Pey(q) =D q dimTHY (X,)

i>0

This implies that the coefficients of Py, (q) are non-negative.



Geometric description when W is a Weyl group

Theorem (Kazhdan—Lusztig 1980)
If W is a Weyl group of an algebraic group, then

Pey(q) =D q dimTHY (X,)

i>0

This implies that the coefficients of Py, (q) are non-negative.

Theorem (Elias—Williamson 2014)
For W an arbitrary Coxeter group, the coefficients of Py ,(q) are
non-negative.
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A matroid is a gadget that generalizes the notion of linear
(in)dependence in a vector space. It has a

- ground set / (finite set)
- a collection of distinguished subsets (independent sets, bases,
closed sets, circuits, .. ) satisfying some axioms
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Example of a matroid

k - field

| - finite set

V C k' a linear subspace. This gives a hyperplane arrangement A
by intersecting with the coordinate hyperplanes in k.
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Example of a matroid

k - field
| - finite set

V C k' a linear subspace. This gives a hyperplane arrangement A
by intersecting with the coordinate hyperplanes in k.

Take V = (x1 + xo + x3 = 0) C k{1:23} After intersecting with the

coordinate hyperplanes, we have

X1:0 X2:0 123
< > x3 =0 1/2\3
\/

0

11



Characteristic polynomial of a matroid

1 2 1/123\3
N
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Characteristic polynomial of a matroid
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Characteristic polynomial of a matroid

(2)
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e Mobius function
p:L(M)—7Z
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Characteristic polynomial of a matroid

(2)

123
3% 1(1)(-1) 2(1)(~1) 3(1)(—1)
\ /

% 0(0)(1)

[ ]
e Mobius function xm(q) = q¢*> —3q+2
p:L(M)—7Z
Definition

The characteristic polynomial is

xm(@) = Y p(F)g e,
FeL(M) 12
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Localization and restriction of matroids

For any flat F € L(M), we can define two new matroids:

e Mpg is a certain matroid on F called the localization of M at
F.

e MF is a certain matroid on I\ F called the restriction of M
at F.
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Localization and restriction of matroids

For any flat F € L(M), we can define two new matroids:

e Mpg is a certain matroid on F called the localization of M at

F.
e MF is a certain matroid on I\ F called the restriction of M
at F.
L(b 1234 \ L(Mi3) 24
NN
12 713 23 24 34 13 0 ~

B P
1&@%4 1\ /3

0
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Definition of KL polynomials of matroids

Definition (Elias—Proudfoot—\Wakefield 2016)

To each matroid M, we have a unique polynomial Py(t) € Z]t]
such that

e If tkM = 0, then Py (t) = 1.
o If tkM > 0, then deg Py(t) < 3rkM

e For every M, trkMPM t=1) = ZXMF )Pure(t
F

ii5)



Definition of KL polynomials of matroids

Definition (Elias—Proudfoot—\Wakefield 2016)

To each matroid M, we have a unique polynomial Py(t) € Z]t]
such that

o If tkM =0, then Py(t) =1.

o If tkM > 0, then deg Py(t) < 3rkM

e For every M, trkMPM t=1) = ZXMF )Pure(t
F

What do these polynomials look like?

ii5)



Examples [Elias—Proudfoot—Wakefield—Young 2016]

M4 is the uniform matroid of rank d on a set of cardinality
m+d.

Earlier examples: M > and My 3
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Examples [Elias—Proudfoot—Wakefield—Young 2016]

M4 is the uniform matroid of rank d on a set of cardinality
m+d.

Earlier examples: M > and My 3

Kazhdan—Lusztig polynomials for the uniform matroid M 4.

d=|1[2|3|4|5|6 |7 |8 9 10 |11 12
1 111111 |1 |1 1 1 1 1

t 2159|1420 |27 |35 |44 |54 65
= 5 (21|56 |120 | 225|385 | 616 | 936
i 14 | 84 | 300 | 825 | 1925 | 4004
o 42 | 330 | 1485 | 5005
i 132 | 1287
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Examples [Elias—Proudfoot—Wakefield—Young 2016]

The braid matroid M, is the matroid arising from the type A,
Coxeter arrangement.
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Examples [Elias—Proudfoot—Wakefield—Young 2016]

The braid matroid M, is the matroid arising from the type A,
Coxeter arrangement.

Kazhdan—Lusztig polynomials for the braid matroid M,.

n=11[2(3|4|5]|6 |7 8 9 10
1 1(1(1]1]1|1 |1 1 1 1
t 15|16 |42 |99 219 466
t2 15 | 175 | 1225 | 6769 | 32830
= 735 | 16065 | 204400
t 76545

17



Conjecture (Elias—Proudfoot—Wakefield 2016)

For any matroid M, the coefficients of Py(t) are non-negative.
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Conjecture (Elias—Proudfoot—Wakefield 2016)

For any matroid M, the coefficients of Py(t) are non-negative.

A sequence ag, ..., a, is called log-concave if for all 1 < i < r, we
have a;_1a;41 < a,?. The sequence has no internal zeroes if

{i | ai # 0} is an interval.

Conjecture (Elias—Proudfoot—Wakefield 2016)

For any matroid M, the coefficients of Pp(t) form a log-concave

sequence with no internal zeroes. Moreover, Py (t) is real-rooted.

Theorem (Adiprasito-Huh—Katz 2015)
The absolute values of the coefficients of xu(t) form a

log-concave sequence with no internal zeroes.

Solved conjectures of Read (1968) and Rota—Heron—Welsh (1970s). 13
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Representable matroids

A representable matroid is one that arises as vectors in a vector

space.

Theorem (Elias—Proudfoot—Wakefield 2016)

If M is a representable matroid, then

Pult) = 3 ¢ dimTHZ/(X(V)).
i>0

20



Reciprocal plane

Consider the map

(k><)l % (k><)l
(zi)ier — (z7 V)ier-

Define the reciprocal plane to be

X(V) = o(V N (k).

21



Comparison

KLoCG KLoM
Coxeter group matroid
Weyl group
Bruhat poset lattice of flats L(M)
R-polynomial characteristic polynomial xp =
Hecke algebra ?
Polo real-rooted
Schubert variety X,
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Example of a non-representable matroid

g h i

the non-Pappus matroid 3



Some ideas for non-negativity

Conjecture (Elias—Proudfoot—Wakefield 2016)

For any matroid M, the coefficients of Py (t) are non-negative.
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Some ideas for non-negativity

Conjecture (Elias—Proudfoot—Wakefield 2016)
For any matroid M, the coefficients of Py (t) are non-negative.
We have constructed a combinatorial machine with

Input: any matroid M

Output: a complex of graded vector spaces C*(M)

Conjecture (Braden—M.—Proudfoot)
The complex C*(M) has the following properties:

e H(C*(M)); =0 unless i = j, and
e dim H'(C*(M)); is the coefficient of t' in Pp(t).

24



The complex for 1H?

In this case, C*(M) is a two-step complex, and its degree 1 piece is

¢
(wiYiet — (1E)kM—rkE=1

wj Z].E.
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In this case, C*(M) is a two-step complex, and its degree 1 piece is

)
(wi)iet — (1E)rkM—rkE=1

wj Z].E.

The Euler characteristic of C*(M) is the linear coefficient of Py(t).

The map ¢ is injective, so this coefficient is given by
dim H*(C*(M));1 = #coatoms — #atoms.

- Kung (1970s) studied ¢ while looking into more general
‘Radon transforms’ for matroids.
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The complex for 1H?

In this case, C*(M) is a two-step complex, and its degree 1 piece is

¢
(wiYiet — (1E)kM—rkE=1

wj Z].E.

The Euler characteristic of C*(M) is the linear coefficient of Py(t).

The map ¢ is injective, so this coefficient is given by
dim H*(C*(M));1 = #coatoms — #atoms.

- Kung (1970s) studied ¢ while looking into more general
‘Radon transforms’ for matroids.
Corollary (Elias—Proudfoot—Wakefield 2016, Braden—M.—
Proudfoot)

For any matroid M, the linear term of P (t) is non-negative. 25



The complex for IH*

Theorem (Braden—M.—Proudfoot)
The degree 2 part of our complex C*(M) computes TH*(X(V)).

Corollary (Braden—M.—Proudfoot)

For any matroid M, the quadratic term of Py(t) is non-negative.
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The complex for IH*

Theorem (Braden—M.—Proudfoot)
The degree 2 part of our complex C*(M) computes TH*(X(V)).

Corollary (Braden—M.—Proudfoot)

For any matroid M, the quadratic term of Py(t) is non-negative.

Thanks!
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