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Abstract. We study equivariant Kazhdan–Lusztig (KL) and 𝑍-polynomials of matroids. We
formulate an equivariant generalization of a result by Braden and Vysogorets that relates the
equivariant KL and 𝑍-polynomials of a matroid with those of a single-element deletion. We also
discuss the failure of equivariant 𝛾-positivity for the 𝑍-polynomial. As an application of our
main result, we obtain a formula for the equivariant KL polynomial of the graphic matroid gotten
by gluing two cycles. Furthermore, we compute the equivariant KL polynomials of all matroids
of corank 2 via valuations. This provides an application of the machinery of Elias, Miyata,
Proudfoot, and Vecchi to corank 2 matroids, and it extends results of Ferroni and Schröter.

1. Introduction

1.1. Overview. The Kazhdan–Lusztig polynomials of matroids were introduced by Elias,
Proudfoot, and Wakefield in [EPW16]. They are prominent objects in the singular Hodge
theory for matroids developed by Braden, Huh, Matherne, Proudfoot, and Wang [BHM+22b].
They take their names due to certain features they share with the classical Kazhdan–Lusztig
polynomials arising from intervals in the Bruhat order poset for Coxeter groups [KL79].

One of the most fundamental objects in the theory of Kazhdan–Lusztig (KL) polynomials of
matroids is the intersection cohomology module. We now recall its construction. Starting from
a matroid M, one constructs the graded Möbius algebra H(M) and the augmented Chow ring
CH(M) (both objects defined in [BHM+22a]). The intersection cohomology module IH(M) is
the unique H(M)-submodule of CH(M) containing the degree-zero piece, CH0(M) � H0(M).
A further object to consider is the stalk at the empty flat of IH(M), denoted by IH(M)∅.
The Kazhdan–Lusztig polynomial of M is the Hilbert–Poincaré series of IH(M)∅, whereas the
Hilbert–Poincaré series of IH(M) is the so-called 𝑍-polynomial of M, introduced and studied
first by Proudfoot, Xu, and Young in [PXY18].

Subtle refinements of the Kazhdan–Lusztig and the 𝑍-polynomial have been introduced in
[GPY17, PXY18], and have been extensively studied in the literature, for example in [Pro19,
XZ19, Pro21, GXY22, KNPV23, GLX+23]. They are equivariant analogues that keep track of
the symmetries of the matroid. Let us recall their definitions. Whenever a group 𝑊 acts on the
ground set of M preserving its collection of bases, we will write 𝑊 ↷ M and call this datum an
equivariant matroid. In such a case, we will associate to M two graded𝑊-representations 𝑃𝑊

M (𝑥)
and 𝑍𝑊

M (𝑥) satisfying a certain recursion given in Definition 2.1. (Note that these polynomials
are a priori only graded virtual𝑊-representations, but [BHM+22b, Theorem 1.3] asserts that they
are graded honest 𝑊-representations.) It is sensible to ask how equivariant Kazhdan–Lusztig
and 𝑍-polynomials relate to their counterparts for single-element deletions of the matroid. In the
non-equivariant setting, a striking recursion found by Braden and Vysogorets [BV20] establishes
such a relation. The main result of the present paper is an equivariant generalization of their
formula.
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We note that one obstruction, which was already pointed out in [BV20, Remark 2.10], is that
the action𝑊 ↷ M is not an action on the deletion M∖ {𝑖}. Therefore, any reasonable equivariant
deletion formula is, at best, with respect to the action of 𝑊𝑖 , the stabilizer of the element 𝑖. In
order to state the equivariant deletion formula, we first define for every element 𝑖 of the ground
set the following distinguished subset of the lattice of flats L(M):

S𝑖 = S𝑖 (M) = {𝐹 ∈ L(M) | 𝐹 ⊊ 𝐸 ∖ {𝑖} and 𝐹 ∪ {𝑖} ∈ L(M)} .

Moreover, we define the equivariant 𝜏-invariant of M as

𝜏𝑊 (M) =
{
[𝑥 𝑗]𝑃𝑊

M (𝑥) if 𝑘 = 2 𝑗 + 1,
0 otherwise,

in analogy with [BV20, Definition 2.6].

Theorem 1.1 Let M be a loopless matroid of rank 𝑘 on 𝐸 , and let 𝑖 ∈ 𝐸 be an element that is
not a coloop. Then,

𝑃
𝑊𝑖

M (𝑥) = 𝑃
𝑊𝑖

M∖{𝑖} (𝑥) − 𝑥 𝑃
𝑊𝑖

M/{𝑖} (𝑥)

+
∑︁

[𝐹 ]∈S𝑖/𝑊𝑖

𝑥
𝑘−rk(𝐹)

2 Ind𝑊𝑖

𝑊𝐹∩𝑊𝑖

(
𝜏𝑊𝐹∩𝑊𝑖 (M/(𝐹 ∪ {𝑖})) ⊠ 𝑃

𝑊𝐹∩𝑊𝑖

M |𝐹 (𝑥)
)
,

𝑍
𝑊𝑖

M (𝑥) = 𝑍
𝑊𝑖

M∖{𝑖} (𝑥) +
∑︁

[𝐹 ]∈S𝑖/𝑊𝑖

𝑥
𝑘−rk(𝐹)

2 Ind𝑊𝑖

𝑊𝐹∩𝑊𝑖

(
𝜏𝑊𝐹∩𝑊𝑖 (M/(𝐹 ∪ {𝑖})) ⊠ 𝑍

𝑊𝐹∩𝑊𝑖

M |𝐹 (𝑥)
)
,

where 𝑊𝐹 is the stabilizer of the flat 𝐹, and S𝑖/𝑊𝑖 is the quotient of S𝑖 by the group action 𝑊𝑖 .

Among the various reasons to search for a theorem like the preceding one, we will emphasize
the following two that led us to it. First, as was established in a prequel [FMSV24] to the present
paper, an interesting consequence of the non-equivariant version of the above result is that it
leads to a proof of the 𝛾-positivity of the 𝑍-polynomial of M. A well-known generalization of
𝛾-positivity is the notion of equivariant 𝛾-positivity (see [Ath18, Section 5.2] and Definition 2.4
below). As we mentioned in [FMSV24, Remark 4.10], and will explain in detail here, one
may show that the equivariant 𝑍-polynomial fails to be equivariantly 𝛾-positive. The second
motivation stems from a computational perspective: the problem of calculating these polynomials
both equivariantly and non-equivariantly is notoriously difficult. It is well known that the defining
recursions, as well as the geometric interpretation via (stalks of) intersection cohomologies, lend
themselves very well for theoretical endeavours, but a significant drawback is that they usually
do not simplify the task of actually computing these polynomials. In this direction, we give
two applications of Theorem 1.1 in Section 4. First, we obtain a formula for the equivariant
KL polynomial of the graphic matroid gotten by gluing together two cycles along an edge. As
a further application of our main result, we will leverage the framework developed by Ferroni
and Schröter [FS22] on split matroids, together with the notion of categorical matroid valuative
invariant introduced by Elias, Proudfoot, Miyata, and Vecchi [EMPV24]. This will allow us
to state helpful formulas that can be used to compute equivariant KL polynomials of arbitrary
corank 2 matroids under certain group actions.

2. Preliminaries

Throughout this paper we shall assume that the reader is acquainted with the basic notions
of matroid theory, graded vector spaces, and matroid polytopes and valuations. For detailed
approaches to matroid valuations we refer to [DF10, AS23, EHL23, FS22].
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2.1. Equivariant Kazhdan–Lusztig and 𝑍-polynomials. Let us review the notion of equivari-
ant Kazhdan–Lusztig and 𝑍-polynomials of matroids, introduced in [GPY17] and [PXY18]. A
further recommended reading is [BHM+22b, Appendix A].

Definition 2.1 There is a unique way of associating to each loopless matroid M and each group
action 𝑊 ↷ M, two graded virtual representations 𝑃𝑊

M (𝑥), 𝑍𝑊
M (𝑥) ∈ gr VRep(𝑊) in such a way

that
(i) If rk(M) = 0, then 𝑃𝑊

M (𝑥) = 𝑍𝑊
M (𝑥) = 1𝑊 .

(ii) If rk(M) > 0, then deg 𝑃𝑊
M (𝑥) < 1

2 rk(M).
(iii) For every M,

𝑍𝑊
M (𝑥) =

∑︁
[𝐹 ]∈L(M)/𝑊

𝑥rk(𝐹 ) Ind𝑊𝑊𝐹
𝑃
𝑊𝐹

M/𝐹 (𝑥)

is palindromic and has degree rk(M).
Here, 1𝑊 is the trivial representation1 of 𝑊 , 𝑊𝐹 is the stabilizer of 𝐹, and L(M)/𝑊 denotes the
quotient of the lattice of flats of M by the group action 𝑊 .

Remark 2.2 The graded representations resulting from the above statement may be viewed as a
categorification of the ordinary Kazhdan–Lusztig polynomial 𝑃M(𝑥) and 𝑍-polynomial 𝑍M(𝑥).
In fact, one has that the 𝑗-th coefficient

[𝑥 𝑗]𝑃M(𝑥) = dim
(
[𝑥 𝑗]𝑃𝑊

M (𝑥)
)

for every group action 𝑊 ↷ M, and similarly for 𝑍𝑊
M (𝑥). In particular, if one considers 𝑊 to be

a single-element group, one recovers exactly the ordinary polynomials.

The following theorem completely characterizes the coefficients of the equivariant Kazhdan–
Lusztig polynomial for uniform matroids under the action of the symmetric group 𝔖𝑛 in terms
of irreducible representations (which are in bijection with Young diagrams with 𝑛 boxes). See
also [GXY22, Theorem 3.7] for a formula involving skew Specht modules. Let 𝑉λ denote the
Specht module associated to the Young diagram (equivalently, the partition) of shape λ.

Theorem 2.3 ([GPY17, Theorem 3.1]) Let U𝑘,𝑛 be the rank 𝑘 uniform matroid with 𝑛 elements.
The constant term of 𝑃𝔖𝑛

U𝑘,𝑛
(𝑥) is the trivial 𝔖𝑛-representation 𝑉[𝑛] . The 𝑗-th coefficient is

[𝑥 𝑗]𝑃𝔖𝑛

U𝑘,𝑛
(𝑥) =

min(𝑛−𝑘,𝑘−2 𝑗 )∑︁
𝑏=1

𝑉[𝑛−2 𝑗−𝑏+1,𝑏+1,2 𝑗−1 ] .

It is generally desirable to produce formulas for our equivariant polynomials with respect to
the full automorphism group Aut(M) of the matroid or, if that is not achievable, with respect
to the largest possible group. In fact, if 𝑊 ↷ M is an equivariant matroid where 𝑊 ≤ Aut(M)
is any group of symmetries acting on the matroid, we can compute either of our equivariant
polynomials 𝐹𝑊

M (𝑥) as the restriction

𝐹𝑊
M (𝑥) = ResAut(M)

𝑊
𝐹

Aut(M)
M (𝑥).

In this sense, Theorem 2.3 provides a complete answer for every possible group action𝑊 ↷ U𝑘,𝑛

(where some cumbersome computations may be hidden in performing the restrictions on the

1In previous related work, the trivial representation was denoted by 𝜏𝑊 . We chose a different notation to avoid
confusion with the 𝜏-invariant introduced in Theorem 1.1.
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coefficients). In contrast, there is no way in general to recover 𝑃𝑊
M (𝑥) from the polynomial

𝑃
𝑊𝑖

𝑀
(𝑥) that we compute using Theorem 1.1.

2.2. Equivariant gamma-positivity. By definition, the equivariant 𝑍-polynomial is palin-
dromic; i.e., for each 0 ≤ 𝑗 ≤ rk(M), the coefficients of degree 𝑗 and rk(M) − 𝑗 are isomorphic
as representations of 𝑊 . Moreover, it is proved in [BHM+22b, Theorem 1.3] that it is also
unimodal; i.e., for every 1 ≤ 𝑗 ≤ 1

2 rk(M), the coefficient [𝑥 𝑗−1]𝑍𝑊
M (𝑥) is a direct summand

of [𝑥 𝑗]𝑍𝑊
M (𝑥). This suggests a notion of equivariant 𝛾-positivity, as explained in Athanasiadis’

survey [Ath18, Section 5.2].

Definition 2.4 Every palindromic equivariant polynomial 𝐹𝑊 (𝑥) =
∑𝑑

𝑗=0 𝑉 𝑗 𝑥
𝑗 , where 𝑉 𝑗 ∈

Rep(𝑊), can be rewritten in a unique way as

(1) 𝐹𝑊 (𝑥) =
⌊ 𝑑

2 ⌋∑︁
𝑗=0

Γ 𝑗 𝑥
𝑗 (1 + 𝑥)𝑑−2 𝑗 ,

where Γ 𝑗 is a virtual representation of 𝑊 for every 𝑗 . We say that 𝐹𝑊 (𝑥) is equivariantly
𝛾-positive, or just Γ-positive, if each Γ 𝑗 ∈ Rep(𝑊), i.e. each Γ 𝑗 is an honest (rather than virtual)
representation.

Since it was proved in [FMSV24, Theorem 4.7] that the non-equivariant 𝑍-polynomial is
𝛾-positive, one could hope that this result could be strengthened by showing that the equivariant
𝑍-polynomial is Γ-positive. However, as is shown by the next example, this does not hold in
general.

Example 2.5 Consider U2,2, the Boolean matroid on a ground set with two elements, and the
action of its full automorphism group 𝑊 = Aut(U2,2) = 𝔖2 ↷ U2,2. One can compute

𝑍𝑊
M (𝑥) = 𝑉[2] + (𝑉[2] ⊕ 𝑉[1,1])𝑥 +𝑉[2]𝑥

2

= 𝑉[2] (1 + 𝑥)2 + (𝑉[1,1] ⊖ 𝑉[2])𝑥.

Thus, 𝑍𝑊
M (𝑥) is not Γ-positive.

When asking for Γ-positivity, we should take care in specifying which group is acting. By
virtue of the following result, we can also focus on the largest possible group action for which
𝑍𝑊

M (𝑥) is Γ-positive.

Lemma 2.6 If 𝐹𝐺 (𝑥) is Γ-positive, then so is 𝐹𝐻 (𝑥) for every subgroup 𝐻 ≤ 𝐺.

Proof. Write 𝐹𝐺 (𝑥) =
∑

𝑗 Γ 𝑗𝑥
𝑗 (1 + 𝑥)𝑑−2 𝑗 , where each Γ 𝑗 is honest. However, note that

𝐹𝐻 (𝑥) = Res𝐺
𝐻
𝐹𝐺 (𝑥) and Res𝐺

𝐻
Γ 𝑗 are, by construction, all honest representations as well. □

Proposition 2.7 The Boolean matroid U𝑛,𝑛 is Γ-positive if and only if the action of 𝑊 is trivial.

Proof. We show that under the action of a group 𝑊 � 𝔖2, the coefficient Γ1 is not an honest
representation. One can compute that

[𝑥1]𝑍𝔖𝑛

U𝑛,𝑛
(𝑥) = 𝑉[𝑛] ⊕ 𝑉[𝑛−1,1] .

By induction (the base case is in Example 2.5), we have that

Res𝔖𝑛

𝔖2
(𝑉[𝑛] ⊕ 𝑉[𝑛−1,1]) = (𝑛 − 1)𝑉[2] ⊕ 𝑉[1,1] .
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Thus, in the notation of equation (1), it follows that Γ1 = 𝑉[1,1] ⊖ 𝑉[2] , which is not honest. □

This shows that the inductive proof of [FMSV24, Theorem 4.7] cannot be extended to the
equivariant setting. The base cases of that induction were precisely the Boolean matroids, and
since these are not Γ-positive unless the action is trivial, here we lack the base case of the
induction for a generic equivariant matroid 𝑊 ↷ M. However, one could still ask whether the
“induction step” holds. More precisely, it is reasonable to ask for an equivariant analogue of the
deletion formulas of Braden and Vysogorets. As we will see below, such formulas do exist.

Before finishing this section let us comment that, to the best of our knowledge, this is the first
instance of a family of combinatorial polynomials arising “in nature”, failing to be equivariantly
𝛾-positive, yet having the property of being (non-equivariantly) 𝛾-positive.

3. Equivariant deletion formula

By carefully modifying and generalizing the strategy employed by Braden and Vysogorets
[BV20, Theorem 2.8], we prove the equivariant deletion formula presented in Theorem 1.1.

Proof of Theorem 1.1. Let grZVRep(𝑊) = VRep(𝑊) [𝑥±1] denote the ring of Z-graded virtual
representations, i.e. the ring of Laurent polynomials over the ring of virtual representations, and
let H𝑊 (M) be the free module over grZVRep(𝑊) with basis indexed by L(M)/𝑊 . Define

ζ [𝐸]𝑊 =
∑︁

[𝐺 ]∈L(M)/𝑊

(
ζ𝐸𝐺

)𝑊
[𝐺],

where
(
ζ𝐸
𝐺

)𝑊 := 𝑥rkM (𝐹 )−rkM (𝐺) Ind𝑊𝑊𝐺

(
𝑃
𝑊𝐺

M/𝐺 (𝑥−2)
)
. For a proper flat 𝐹, define ζ [𝐹]𝑊𝐹

similarly in H𝑊𝐹 (M|𝐹). Lastly, define a morphism by letting

Δ𝑊𝑖 : H𝑊𝑖 (M) → H𝑊𝑖 (M ∖ {𝑖})

[𝐹] ↦→ 𝑥rkM∖{𝑖} (𝐹∖{𝑖})−rkM (𝐹 ) [𝐹 ∖ {𝑖}]

and extending grZVRep(𝑊𝑖)-linearly. Now, the element Δ𝑊𝑖 (ζ [𝐸]𝑊𝑖 ) ∈ H𝑊𝑖 (M ∖ {𝑖}) can be
written as

Δ𝑊𝑖 (ζ [𝐸]𝑊𝑖 ) =
∑︁

[𝐹 ]∈L(M)/𝑊𝑖

(
ζ𝐸𝐹

)𝑊𝑖

𝑥rkM∖{𝑖} (𝐹∖{𝑖})−rkM (𝐹 ) [𝐹 ∖ {𝑖}] .

Therefore, the coefficient corresponding to [∅] is

[∅] Δ𝑊𝑖 (ζ [𝐸]𝑊𝑖 ) =
(
ζ𝐸∅

)𝑊𝑖

+ 𝑥−1
(
ζ𝐸{𝑖}

)𝑊𝑖

= 𝑥𝑘
(
𝑃
𝑊𝑖

M (𝑥−2) + 𝑥−2𝑃𝑊𝑖

M/{𝑖} (𝑥
−2)

)
.

Similarly, we can write

Δ𝑊𝑖 (ζ [𝐸]𝑊𝑖 ) = ζ[𝐸 ∖ {𝑖}]𝑊𝑖 +
∑︁

[𝐹 ]∈S𝑖/𝑊𝑖

𝐹≠𝐸∖{𝑖}

Ind𝑊𝑖

𝑊𝐹∩𝑊𝑖

(
𝜏𝑊𝐹∩𝑊𝑖 (M/(𝐹 ∪ {𝑖})) ⊠ ζ [𝐹]𝑊𝐹∩𝑊𝑖

)
,

and taking again the coefficient of [∅] we obtain

[∅]Δ𝑊𝑖 (ζ [𝐸]𝑊𝑖 )

= 𝑥𝑘
©­«𝑃𝑊𝑖

M∖{𝑖} (𝑥
−2) +

∑︁
[𝐹 ]∈S𝑖/𝑊𝑖

𝑥−(𝑘−rk(𝐹 ) ) Ind𝑊𝑖

𝑊𝐹∩𝑊𝑖

(
𝜏𝑊𝐹∩𝑊𝑖 (M/(𝐹 ∪ {𝑖})) ⊠ 𝑃

𝑊𝐹∩𝑊𝑖

M |𝐹 (𝑥−2)
)ª®¬ .
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Dividing by 𝑥𝑘 yields the result for the KL polynomial after a change of variable, with 𝑥 in
place of 𝑥−2. The proof for 𝑍

𝑊𝑖

M (𝑥) is entirely analogous and relies on the definition of the
grZVRep(𝑊𝑖)-module map Φ

𝑊𝑖

M : H𝑊𝑖 (M) → grZVRep(𝑊𝑖) given by∑︁
[𝐹 ]∈L(M)/𝑊𝑖

𝛼𝐹 [𝐹]
Φ

𝑊𝑖
M↦−→

∑︁
[𝐹 ]∈L(M)/𝑊𝑖

𝑥− rkM (𝐹 )𝛼𝐹 . □

Remark 3.1 As we commented before, the formula arising from Theorem 1.1 provides the
correct induction step to show the Γ-positivity for some equivariant matroids 𝑊 ↷ M, where
we now understand that a positive or negative answer depends on 𝑊 . We stress the fact that the
datum of M alone is not enough. Indeed, for a fixed element 𝑖, if 𝑍𝑊𝑖

M\{𝑖} (𝑥) and 𝑍
𝑊𝐹∩𝑊𝑖

M |𝐹 (𝑥) for
every 𝐹 ∈ S𝑖 are Γ-positive, then 𝑍

𝑊𝑖

M is Γ-positive as well. The reader could ask if anything
can be deduced about Γ-positivity when the element 𝑖 we delete is a coloop of M. If 𝑊 does not
fix 𝑖 the answer is usually negative (see again Example 2.5), so we will work with respect to the
action of 𝑊𝑖 � 𝑊𝑖 × {1} ≤ 𝑊 , where 𝑊𝑖 is a group of symmetries for M \ {𝑖} and {1} is the
trivial group fixing the coloop 𝑖. In this case,

𝑍
𝑊𝑖×{1}
M (𝑥) = 𝑍

𝑊𝑖

M\{𝑖} (𝑥) ⊗
(
1{1} (1 + 𝑥)

)
.

In particular, one can see that if the coefficients Γ 𝑗 of

𝑍
𝑊𝑖

M\{𝑖} (𝑥) =

⌊
rk(M)−1

2

⌋∑︁
𝑗=0

Γ 𝑗𝑥
𝑗 (1 + 𝑥)rk(M)−2 𝑗

are all honest representations, then the coefficients of

𝑍
𝑊𝑖×{1}
M (𝑥) =

⌊
rk(M)

2

⌋∑︁
𝑗=0

(
Γ 𝑗 ⊗ 1{1}

)
𝑥 𝑗 (1 + 𝑥)rk(M)−2 𝑗+1

are all honest representations as well. Concretely, that is why

𝑍
𝔖1×𝔖1
U2,2

(𝑥) = (1𝔖1 (1 + 𝑥)) ⊗ (1𝔖1 (1 + 𝑥)) = (1𝔖1 ⊗ 1𝔖1) (1 + 𝑥)2 = 1𝔖1×𝔖1 (1 + 𝑥)2

is Γ-positive, while 𝑍
𝔖2
U2,2

(𝑥) is not.

The reader should not be misled to think that equivariant 𝛾-positivity for 𝑍-polynomials
always fails when the action is not trivial. The following example shows that in some cases this
property may indeed hold true.

Example 3.2 Let M = U2,3 and 𝑊 � 𝔖2 be a group acting on M by permuting a fixed pair of
elements in the ground set 𝐸 . A computation using the defining recursion yields

𝑍
𝔖2
U2,3

(𝑥) = 𝑉[2] + (2𝑉[2] ⊕ 𝑉[12 ])𝑥 +𝑉[2]𝑥
2 = 𝑉[2] (1 + 𝑥)2 +𝑉[12 ]𝑥,

which is Γ-positive. Note again how this result could not be obtained inductively. If we delete
the element 𝑖 that is fixed by the action of 𝑊 , Theorem 1.1 tells us that

𝑍
𝔖2
U2,3

(𝑥) = 𝑍
𝔖2
U2,2

(𝑥) + 𝑥 𝜏𝔖2 (U2,3/{𝑖})

= 𝑉[2] (1 + 𝑥)2 + (𝑉[12 ] ⊖ 𝑉[2])𝑥 +𝑉[2]𝑥 = 𝑉[2] (1 + 𝑥)2 +𝑉[12 ]𝑥,

where the final result is Γ-positive even though one of the summands on the right-hand side is
not.
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Experiments suggest that 𝑍𝔖2
U𝑛−1,𝑛

(𝑥) may be Γ-positive for every 𝑛 ≥ 1, while for larger groups
it is not. This motivates us to pose the following question.

Question 3.3 Does Γ-positivity of 𝑍
𝔖𝑛−𝑘+1
U𝑘,𝑛

(𝑥) hold for every 𝑛 ≥ 𝑘 ≥ 1? If not, what is the
largest group 𝑊 such that 𝑍𝑊

U𝑘,𝑛
(𝑥) has this property?

4. Applications: gluing of cycles and corank 2 matroids

In this section, we will give two applications of Theorem 1.1. The first, in Section 4.1,
computes the equivariant KL polynomial of the graphic matroid (with respect to the largest
possible group of symmetries) obtained by gluing together two cycle graphs along an edge.
Using this result, together with valuativity of the equivariant KL polynomials in [EMPV24]
(also cf. Section 4.2.1), we obtain in Section 4.2.2 a formula for the equivariant KL polynomials
of arbitrary corank 2 matroids.

4.1. Equivariant KL polynomial of two glued cycles. The goal of this section is to compute the
equivariant KL polynomial of the graphic matroid (with respect to the largest possible group of
symmetries) obtained by gluing together two cycle graphs along an edge. This is an equivariant
version of the computation for parallel connection graphs of [BV20, Theorem 3.2] in the case of
gluing cycles. Before giving the actual computation in Section 4.1.2, we devote Section 4.1.1 to
some general results on the representation theory of the symmetric group.

4.1.1. Representation theory generalities. For any undefined terms or concepts in the repre-
sentation theory of finite groups (especially as it applies to the representation theory of the
symmetric group), we refer to [FH13] or [Jam87]. Given an irreducible 𝔖𝑁 -representation 𝑉λ,
we may restrict to a two-factor Young subgroup 𝔖𝑑 ×𝔖𝑁−𝑑 ≤ 𝔖𝑁 in the following way:

(2) Res𝔖𝑁

𝔖𝑑×𝔖𝑁−𝑑
𝑉λ =

∑︁
𝜇,𝜈

𝑐(λ; 𝜇, 𝜈) 𝑉𝜇 ⊗ 𝑉𝜈 ,

where the coefficients 𝑐(λ; 𝜇, 𝜈) are called Littlewood–Richardson coefficients, and the 𝑉𝜇 ⊗ 𝑉𝜈

are irreducible representations of 𝔖𝑑 × 𝔖𝑁−𝑑 (i.e., 𝑉𝜇 is an irreducible representation of 𝔖𝑑

and 𝑉𝜈 is an irreducible representation of 𝔖𝑁−𝑑).
Recall that a semistandard skew Young tableau 𝑇 of shape λ/𝜇 is a filling of the skew shape

λ/𝜇 whose rows are weakly increasing and whose columns are strictly increasing. We say that
a filling has content 𝜈 = [𝜈1, . . . , 𝜈ℎ] if 𝜈𝑖 is the number of times 𝑖 appears in the filling. Now
we read the filling by rows from right to left, and for every 𝑠 ≥ 1 we count the number of
occurrences of each 𝑖 in the first 𝑠 cells. If this is a non-decreasing function of 𝑖 we call the
filling a Littlewood–Richardson (LR) filling. The number of LR fillings of λ/𝜇 of content 𝜈 is
precisely the quantity 𝑐(λ; 𝜇, 𝜈) of equation (2).

In view of our application to gluing cycles in Section 4.1.2, we now set λ = [𝑁 − 2𝑖, 2𝑖].
Fortunately, the Littlewood–Richardson coefficients 𝑐(λ; 𝜇, 𝜈) are computable for this choice of
λ, and we compute them in Proposition 4.1 below. (In general, one should not expect to be able
to efficiently decide the value of a given 𝑐(λ; 𝜇, 𝜈).) It is clear that if 𝑐(λ; 𝜇, 𝜈) ≠ 0, then 𝜇 =

[𝑝, 2ℓ , 1𝑑−𝑝−2ℓ] and 𝜈 = [𝑞, 2𝑠, 1𝑁−𝑑−𝑞−2𝑠], with 1 ≤ 𝑝, 𝑞 ≤ 𝑁−2𝑖 and 𝑑−𝑝−ℓ, 𝑁−𝑑−𝑞−𝑠 ≤ 𝑖;
i.e., in this case the tableaux consist respectively of 𝑑 and 𝑁 − 𝑑 cells and they are contained in
the diagram associated to λ.

Proposition 4.1 The coefficient 𝑐(λ; 𝜇, 𝜈) is non-zero if and only if one of the following holds:
• 𝑞 = 𝑁 − 2𝑖 − 𝑝 and 𝑠 = 𝑝 + 𝑖 − 𝑑 + ℓ,
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Figure 1. λ = [6, 27] and 𝜇 = [3, 22, 13].

• 𝑞 = 𝑁 − 2𝑖 − 𝑝 + 1 and 𝑠 = 𝑝 + 𝑖 − 𝑑 + ℓ,
• 𝑞 = 𝑁 − 2𝑖 − 𝑝 + 1 and 𝑠 = 𝑝 + 𝑖 − 𝑑 + ℓ − 1,
• 𝑞 = 𝑁 − 2𝑖 − 𝑝 + 2 and 𝑠 = 𝑝 + 𝑖 − 𝑑 + ℓ − 1.

Moreover, in each of these cases 𝑐(λ; 𝜇, 𝜈) = 1.

Note that not every option in the list produces a valid partition for different shapes of λ =

[𝑁 − 2𝑖, 2𝑖] and 𝜇. For example, when 𝑝 = 𝑁 − 2𝑖, i.e. 𝜇 = [𝑁 − 2𝑖], the only valid partition
becomes 𝜈 = [2𝑖]. Moreover, if 𝑝 (resp. 𝑞) is equal to 1, we assume ℓ (resp. 𝑠) to be equal to
zero and if 𝑝 (resp. 𝑞) is equal to 2, then ℓ (resp. 𝑠) counts the number of rows with two boxes
starting from the second row (e.g. if 𝜇 = [23] then 𝑝 = 2 and ℓ = 2).

Proof. The idea is that we want to count LR fillings of shape λ/𝜇 with content 𝜈. First we need
to place all the 1’s—note that there are exactly 𝑞 of them. At least 𝑁 − 2𝑖 − 𝑝 occurrences of
1 are needed to fill the first row λ1/𝜇1; we can also have at most two more 1’s to place in the
first and second column. Additional 1’s would violate the condition of being a semistandard
Young tableau, and fewer 1’s would violate the LR filling condition (the first row would end
with a number larger than 1). Next we move on to the 𝑠 pairs (the ones corresponding to 𝜈 𝑗 for
2 ≤ 𝑗 ≤ 𝑠 + 1). For simplicity we focus on the first case, because the others are similar. The
idea here is to fill exactly the first column with numbers from 2 to 𝑠 + 1, no more and no less;
at the same time we are also filling the first 𝑠 cells of the second column. Lastly, we look at the
entries 𝜈 𝑗 for 𝑠 + 2 ≤ 𝑗 ≤ 𝑠 + 𝑡 + 1; these can only go in one possible way at the end of the second
column. □

Example 4.2 We illustrate the strategy of the previous proof when λ = [6, 27] and 𝜇 = [3, 22, 13]
(see Figure 1). For this skew shape λ/𝜇, the possible contents 𝜈 are

• [3, 22, 13],
• [4, 22, 12],
• [4, 2, 14],
• [5, 2, 13].

All four cases in Proposition 4.1 are indeed feasible, and the associated unique fillings are
depicted in Figure 2.

4.1.2. Application to gluing cycles. We now apply the results of the previous subsection to
compute the equivariant KL polynomial of the graphic matroid associated to the gluing of two
cycles along an edge. First we recall that the graphic matroid C𝑛 associated to an 𝑛-cycle graph
is isomorphic to the uniform matroid of corank one U𝑛−1,𝑛, so we will use the notation C𝑛 and
U𝑛−1,𝑛 interchangeably. On this matroid, there is a natural action of 𝔖𝑛 permuting the ground
set elements. When we glue two cycles of lengths 𝑎 and 𝑏 along a common edge 𝑒, the resulting
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Figure 2. The unique filling in each of the four cases

graphic matroid, which we will denote as C𝑎,𝑏, inherits an action of𝑊𝑒 ≤ 𝔖𝑎+𝑏−2, the stabilizer
of 𝑒. (Notice that this group acts on the matroid, not on the underlying graph.) We a priori do
not require that the labels of the cycle of length 𝑎 and the labels of the cycle of length 𝑏 are given
by intervals of consecutive integers. In particular, for two sets 𝐴 and 𝐵 such that 𝐴 ∩ 𝐵 = {𝑒},
we will write C𝐴, C𝐵, and C𝐴,𝐵 as labelled counterparts of C𝑎, C𝑏, and C𝑎,𝑏, where 𝑎 = |𝐴|
and 𝑏 = |𝐵|. As usual, we denote 𝐸 = 𝐴 ∪ 𝐵 = [𝑛] for the full ground set of C𝐴,𝐵.

There is an isomorphism 𝑊𝑒 � 𝔖𝐴∖𝑒 ×𝔖𝐵∖𝑒, and thus one may compute via Theorem 1.1
that

(3) 𝑃
𝔖𝐴∖𝑒×𝔖𝐵∖𝑒

C𝐴,𝐵
(𝑥) = 𝑃

𝔖𝐴∖𝑒×𝔖𝐵∖𝑒

C𝐸∖𝑒
(𝑥) − 𝑥𝑃

𝔖𝐴∖𝑒

C𝐴∖𝑒
(𝑥) ⊗ 𝑃

𝔖𝐵∖𝑒

C𝐵∖𝑒
(𝑥).

To obtain equation (3), we note that, in the case of parallel connection graphs, the sum
appearing on the right-hand side of the deletion formula of Theorem 1.1 vanishes. To see
this, we first point out that the analogous non-equivariant computation in [BV20] implies that
dim 𝜏𝑊𝐹∩𝑊𝑖 (M/(𝐹 ∪ {𝑖})) = 0, and then [BHM+22b, Theorem 1.3 (1)], asserting that equi-
variant KL polynomials are honest representations, implies that 𝜏𝑊𝐹∩𝑊𝑖 (M/(𝐹 ∪ {𝑖})) = 0 as a
representation.

The following useful proposition can be obtained by specializing Theorem 2.3 to the case of
a corank 1 uniform matroid.

Proposition 4.3 The 𝔖𝑛-equivariant Kazhdan–Lusztig polynomial of the corank 1 uniform
matroid U𝑛−1,𝑛 is given by

𝑃
𝔖𝑛

U𝑛−1,𝑛
(𝑥) = 𝑃

𝔖𝑛

C𝑛
(𝑥) =

⌊ 𝑛−2
2 ⌋∑︁
𝑗=0

𝑉[𝑛−2 𝑗 ,2 𝑗 ]𝑥
𝑗 .

As we will see below, the preceding result and Proposition 4.1 are the only tools needed for
computing the equivariant KL polynomial of two cycles glued together. In fact, the first term on
the right-hand side of equation (3) can be rewritten as follows:

(4) 𝑃
𝔖𝐴∖𝑒×𝔖𝐵∖𝑒

C𝐸∖𝑒
(𝑥) = Res𝔖𝐸∖𝑒

𝔖𝐴∖𝑒×𝔖𝐵∖𝑒
𝑃
𝔖𝐸∖𝑒

C𝐸∖𝑒
(𝑥).

The following example explains how to give a concrete computation for the right-hand side in
equation (4).

Example 4.4 We will compute the equivariant KL polynomial of (𝔖4 ×𝔖5) ↷ C5,6, where we
abuse notation and write C5,6 as a shorthand for C𝐴,𝐵 for 𝐴 = {1, . . . , 5} and 𝐵 = {5, . . . , 10}.

First, we carry out the computation of equation (4). To this end, consider the equivariant
matroid (𝔖4 ×𝔖5) ↷ U8,9 on the groundset {1, . . . , 10} \ {5}, where 𝔖5 is meant to act on the



10 L. FERRONI, J. P. MATHERNE, AND L. VECCHI

subset of labels {6, 7, 8, 9, 10}. Its equivariant Kazhdan–Lusztig polynomial is given by

𝑃
𝔖4×𝔖5
U8,9

(𝑥) = Res𝔖9
𝔖4×𝔖5

(
𝑉[9] +𝑉[7,2]𝑥 +𝑉[5,22 ]𝑥

2 +𝑉[3,23 ]𝑥
3
)
.

By carefully substituting all the possible values from Proposition 4.1 we see that

[𝑥0]𝑃𝔖4×𝔖5
U8,9

(𝑥) = 𝑉[4] ⊗ 𝑉[5] ,

[𝑥1]𝑃𝔖4×𝔖5
U8,9

(𝑥) = (𝑉[4] ⊗ 𝑉[5]) ⊕ (𝑉[4] ⊗ 𝑉[4,1]) ⊕ (𝑉[4] ⊗ 𝑉[3,2])
⊕ (𝑉[3,1] ⊗ 𝑉[5]) ⊕ (𝑉[3,1] ⊗ 𝑉[4,1]) ⊕ (𝑉[22 ] ⊗ 𝑉[5]),

[𝑥2]𝑃𝔖4×𝔖5
U8,9

(𝑥) = (𝑉[4] ⊗ 𝑉[3,2]) ⊕ (𝑉[4] ⊗ 𝑉[22,1]) ⊕ (𝑉[3,1] ⊗ 𝑉[4,1])
⊕ (𝑉[3,1] ⊗ 𝑉[3,2]) ⊕ (𝑉[3,1] ⊗ 𝑉[3,12 ]) ⊕ (𝑉[3,1] ⊗ 𝑉[22,1])
⊕ (𝑉[22 ] ⊗ 𝑉[5]) ⊕ (𝑉[22 ] ⊗ 𝑉[4,1]) ⊕ (𝑉[22 ] ⊗ 𝑉[3,2])
⊕ (𝑉[2,12 ] ⊗ 𝑉[4,1]) ⊕ (𝑉[2,12 ] ⊗ 𝑉[3,12 ]),

[𝑥3]𝑃𝔖4×𝔖5
U8,9

(𝑥) = (𝑉[3,1] ⊗ 𝑉[22,1]) ⊕ (𝑉[22 ] ⊗ 𝑉[22,1]) ⊕ (𝑉[22 ] ⊗ 𝑉[3,2])
⊕ (𝑉[2,12 ] ⊗ 𝑉[22,1]) ⊕ (𝑉[2,12 ] ⊗ 𝑉[2,13 ]) ⊕ (𝑉[2,12 ] ⊗ 𝑉[3,12 ])
⊕ (𝑉[14 ] ⊗ 𝑉[2,13 ]).

Now we move on to the tensor product on the right-hand side of equation (3). Proposition 4.3
asserts that 𝑃𝔖4

C4
(𝑥) = 𝑉[4] + 𝑉[22 ]𝑥 and 𝑃

𝔖5
C5

(𝑥) = 𝑉[5] + 𝑉[3,2]𝑥, and by subtracting them from
the coefficients computed before we obtain

[𝑥0]𝑃𝔖4×𝔖5
C5,6

(𝑥) = 𝑉[4] ⊗ 𝑉[5] ,

[𝑥1]𝑃𝔖4×𝔖5
C5,6

(𝑥) = (𝑉[4] ⊗ 𝑉[4,1]) ⊕ (𝑉[4] ⊗ 𝑉[3,2]) ⊕ (𝑉[3,1] ⊗ 𝑉[5])
⊕ (𝑉[3,1] ⊗ 𝑉[4,1]) ⊕ (𝑉[22 ] ⊗ 𝑉[5]),

[𝑥2]𝑃𝔖4×𝔖5
C5,6

(𝑥) = (𝑉[4] ⊗ 𝑉[22,1]) ⊕ (𝑉[3,1] ⊗ 𝑉[4,1]) ⊕ (𝑉[3,1] ⊗ 𝑉[3,2])
⊕ (𝑉[3,1] ⊗ 𝑉[3,12 ]) ⊕ (𝑉[3,1] ⊗ 𝑉[22,1]) ⊕ (𝑉[22 ] ⊗ 𝑉[4,1])
⊕ (𝑉[22 ] ⊗ 𝑉[3,2]) ⊕ (𝑉[2,12 ] ⊗ 𝑉[4,1]) ⊕ (𝑉[2,12 ] ⊗ 𝑉[3,12 ]),

[𝑥3]𝑃𝔖4×𝔖5
C5,6

(𝑥) = (𝑉[3,1] ⊗ 𝑉[22,1]) ⊕ (𝑉[22 ] ⊗ 𝑉[22,1]) ⊕ (𝑉[2,12 ] ⊗ 𝑉[22,1])
⊕ (𝑉[2,12 ] ⊗ 𝑉[2,13 ]) ⊕ (𝑉[2,12 ] ⊗ 𝑉[3,12 ]) ⊕ (𝑉[14 ] ⊗ 𝑉[2,13 ]).

For comparison, the non-equivariant Kazhdan–Lusztig polynomials are listed below:

𝑃C5,6 (𝑥) = 74𝑥3 + 113𝑥2 + 26𝑥 + 1,

𝑃U8,9 (𝑥) = 84𝑥3 + 120𝑥2 + 27𝑥 + 1.

As expected, the non-equivariant coefficients give the dimensions of the corresponding repre-
sentations.

4.2. Corank 2 matroids. We recall the machinery of Elias, Proudfoot, Miyata, and Vecchi
[EMPV24], which implies that the equivariant KL polynomials of matroids are matroid valua-
tions. As an application of this fact, Theorem 1.1, and Section 4.1, we will deduce new formulas
for arbitrary matroids of corank 2, and therefore will generalize results of Ferroni and Schröter
[FS22, Section 9.1].
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4.2.1. Equivariant valuativity for Kazhdan–Lusztig polynomials. We recall the construction
from [EMPV24]. The construction is technical, and we refer the reader to [EMPV24] for
details. Consider the category M of matroids with rank preserving weak maps. For every
increasing sequence of non-negative integers k = (𝑘1, . . . , 𝑘𝑟 ) we define the Whitney functor
Φk : M→ VecQ as follows. For a given M and such a k, we define

Lk(M) = {𝐹1 ⊆ · · · ⊆ 𝐹𝑟 | 𝐹𝑖 ∈ L(M) and rk(𝐹𝑖) = 𝑘𝑖 for all 1 ≤ 𝑖 ≤ 𝑟}.

Then, on objects, Φk(M) is a vector space with basis Lk(M) and on morphisms, if 𝜑 : M → M′

and (𝐹1, . . . , 𝐹𝑟 ) ∈ Lk(M), then

Φk(𝜑) (𝐹1, . . . , 𝐹𝑟 ) =

(
𝜑(𝐹1), . . . , 𝜑(𝐹𝑟 )

)
if rkM′ (𝜑(𝐹𝑖)) = 𝑘𝑖 for all 𝑖,

0 otherwise.

We now define the Kazhdan–Lusztig functor KL: M → bigrVecQ into the category of
bigraded vector spaces as follows. On matroids with loops we set KL(M) = 0. On the full
subcategory of loopless matroids of rank 𝑘 , we define

KL := 1 ⊕
𝑖⊕

𝑟=1

⊕
𝑅⊆[𝑟 ]

⊕
𝑎0<𝑎𝑖<· · ·<𝑎𝑟<𝑎𝑟+1

𝑎0=0
𝑎𝑟=𝑖

𝑎𝑟+1=𝑘−𝑖

Φk(−𝑖,−|𝑅 |),

where 1 is the trivial functor that maps every matroid M to a 1-dimensional Q-vector space,
k = (𝑘1, . . . , 𝑘𝑟 ), 𝑘 𝑗 = 𝑘 − 𝑎𝑠𝑟+1− 𝑗 (𝑅) − 𝑎𝑟− 𝑗 , and 𝑠 𝑗 (𝑅) := min{ℓ ∈ Z ∖ 𝑅 | ℓ ≥ 𝑗}. By
definition, this functor categorifies

𝑃M(𝑡, 𝑢) :=
∑︁
𝑖, 𝑗

dim KL𝑖, 𝑗 𝑡𝑖𝑢 𝑗 ,

and by [PXY18, Theorem 6.1]
𝑃M(𝑥,−1) := 𝑃M(𝑥).

Let Nbe a matroid subdivision of some matroid polytope M, and let Ω be an orientation of N.
In light of [EMPV24, Corollary 8.14], it is possible to write an exact sequence of bigraded vector
spaces involving all the internal faces of N. Now let 𝑊 be a group preserving the subdivision
N. For every N ∈ N, the bigraded vector space KL(N) carries an action of the stabilizer 𝑊N.
One can show that the virtual graded 𝑊N-representation∑︁

𝑗

(−1) 𝑗 KL𝑖, 𝑗 (N)

is equal to the coefficient [𝑥𝑖]𝑃𝑊N
N (𝑥) (see the discussion in [EMPV24, Section 9]).

A subset 𝑆 of a matroid M is stressed if the restriction M|𝑆 and the contraction M/𝑆 are
uniform matroids. A matroid is called elementary split if it does not contain minors isomorphic
to U0,1 ⊕ U1,2 ⊕ U1,1 (see [FS22, Section 4]). For these matroids, we obtain the next equation,
which follows from [EMPV24, Proposition 9.6] and provides a categorical generalization of
[FS22, Theorem 1.4].

Theorem 4.5 Let 𝑊 ↷ M be an equivariant elementary split matroid of rank 𝑘 on the ground
set 𝐸 , and let Fdenote its family of stressed flats. Then

𝑃𝑊
M (𝑥) = 𝑃𝑊

U𝑘,𝑛
(𝑥) −

∑︁
𝐹∈F/𝑊

Ind𝑊𝑊𝐹

(
𝑃
𝑊𝐹

Λ𝑟,𝑘,𝐹,𝐸
(𝑥) − 𝑃

𝑊𝐹

Π𝑟,𝑘,𝐹,𝐸
(𝑥)

)
.
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Remark 4.6 In the above statement, the matroids Λ𝑟 ,𝑘,𝐹,𝐸 appearing on the right-hand side are
matroids on 𝐸 having rank 𝑘 and a unique distinguished stressed flat 𝐸 ∖ 𝐹 of rank 𝑘 − 𝑟 . The
matroid Π𝑟 ,𝑘,𝐹,𝐸 has ground set 𝐸 and rank 𝑘 , and is given by the direct sum of two uniform
matroids, U𝑘−𝑟 ,𝐸∖𝐹 ⊕U𝑟 ,𝐹 . For the particular case in which 𝐹 = {1, . . . , ℎ}, where ℎ = |𝐹 |, it is
customary to write Λ𝑟 ,𝑘,ℎ,𝑛 and Π𝑟 ,𝑘,ℎ,𝑛, which closely follows the notation of [FS22, Section 3].
(In that article, only isomorphism classes of these matroids are relevant so the choice of the
labelling of 𝐹 is not taken into account.)

4.2.2. Formula for corank 2 matroids. We now describe the equivariant KL polynomial of
arbitrary matroids of corank 2.2 The key observation is the following: all matroids of corank 2
can be written as a direct sum of loops, coloops and one connected (elementary) split matroid.
By basic properties of equivariant KL polynomials we may disregard the loops and the coloops
and focus on the connected summand that remains. This strategy has been used by Ferroni and
Schröter in [FS22, Section 9.1] in order to compute the non-equivariant KL and 𝑍-polynomials
of corank 2 matroids. To simplify the exposition we will in fact assume that our matroid is
indeed connected.

If we specialize Theorem 4.5 for the case in which 𝑘 = 𝑛−2, we need to describe in a reasonable
way the matroids Λ𝑟 ,𝑛−2,𝐹,𝐸 and Π𝑟 ,𝑛−2,𝐹,𝐸 appearing in that statement. In any connected
matroid of corank 2 all the restrictions at stressed flats are uniform of corank 1, i.e., M|𝐹 =

U |𝐹 |−1,𝐹 . In particular, Λ𝑟 ,𝑛−2,𝐹,𝐸 = Λ |𝐹 |−1,𝑛−2,𝐹,𝐸 , while Π𝑟 ,𝑛−2,𝐹,𝐸 = Π |𝐹 |−1,𝑛−2,𝐹,𝐸 �

U𝑛−1−|𝐹 | ,𝑛−|𝐹 | ⊕ U |𝐹 |−1, |𝐹 | , i.e., the last matroid is a direct sum of two corank 1 uniform
matroids. Hence, specializing Theorem 4.5 for connected corank 2 matroids, the statement reads
as follows.

Proposition 4.7 Let 𝑊 ↷ M be an equivariant connected matroid of rank 𝑛 − 2 on the ground
set 𝐸 = [𝑛] and let Fdenote its family of stressed flats. Then,

𝑃𝑊
M (𝑥) = 𝑃𝑊

U𝑛−2,𝑛
(𝑥) −∑︁

𝐹∈F/𝑊

(
Ind𝑊𝑊𝐹

(
𝑃
𝑊𝐹

Λ|𝐹 |−1,𝑛−2,𝐹,𝐸
(𝑥)

)
− Ind𝑊𝑊𝐹

(
𝑃
𝑊𝐹

U𝑛−1−|𝐹 |,𝑛−|𝐹 |
(𝑥) ⊠ 𝑃

𝑊𝐹

U|𝐹 |−1,𝐹
(𝑥)

))
.

In particular, all except one of the equivariant KL polynomials appearing on the right-hand
side follow immediately by the discussion in Section 4.1 and Theorem 2.3, as they correspond
to uniform matroids of corank 1 and 2. Thus, the only remaining difficult computation that one
needs to perform is 𝑃𝑊𝐹

Λ|𝐹 |−1,𝑛−2,𝐹,𝐸
(𝑥).

The main strategy to simplify this calculation is to leverage that the base polytope of
Λ |𝐹 |−1,𝑛−2,𝐹,𝐸 admits an explicit matroid subdivision. The crucial observation made in [FS22,
Proposition 6.9] is that all the maximal pieces in such subdivision are matroids of the form C𝑎,𝑏.
Therefore, we now categorify [FS22, Corollary 6.10].

Lemma 4.8 Let 𝑊 be a group acting on the matroid subdivision described in [FS22, Proposi-
tion 6.9] of the matroid Λ𝑟 ,𝑛−2,𝑟+1,𝑛 (cf. Remark 4.6). Then,

𝑃𝑊
Λ𝑟,𝑛−2,𝑟+1,𝑛

(𝑥) =

2One may obtain similar formulas for the equivariant 𝑍-polynomials of arbitrary matroids of corank 2 if one has
closed formulas for uniform matroids of corank 1 and 2.
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𝑛−𝑟−1∑︁
𝑎=2

𝑃𝑊
C𝑎,𝑛+1−𝑎

(𝑥) −
𝑛−𝑟−2∑︁
𝑎=2

Ind𝑊(𝔖𝑎×𝔖𝑛−𝑎 )∩𝑊 Res𝔖𝑎×𝔖𝑛−𝑎
(𝔖𝑎×𝔖𝑛−𝑎 )∩𝑊

(
𝑃
𝔖𝑎

C𝑎
(𝑥) ⊠ 𝑃

𝔖𝑛−𝑎
C𝑛−𝑎

(𝑥)
)
,

where 𝔖𝑎 ×𝔖𝑛−𝑎 denotes the product of the actions that permute respectively the first 𝑎 and the
last 𝑛 − 𝑎 elements of 𝐸 = [𝑛].

Proof. This follows from an immediate application of [EMPV24, Proposition 9.6] because 𝑊 is
assumed to act on the matroid subdivision. □

Remark 4.9 We note that the group 𝔖𝐸∖𝐹 always acts on the subdivision mentioned above,
because all the matroids that appear on the subdivision have 𝐸 ∖ 𝐹 as an independent set.

Since we know how to compute the equivariant KL polynomial of the matroids C𝐴,𝐵, the
preceding lemma implies that we are able to compute in a satisfactory way the equivariant KL
polynomial of Λ |𝐹 |−1,𝑛−2,𝐹,𝐸 , and thus of any connected corank 2 matroid on an arbitrary action
𝑊 that preserves the matroid subdivision described in [FS22, Proposition 6.9].
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