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Abstract. A generalized spline on a graph G with edges labeled by ideals in a ring R consists of

a vertex-labeling by elements of R so that the labels on adjacent vertices u, v differ by an element

of the ideal associated to the edge uv. We study the R-module of generalized splines and produce
minimum generating sets for several families of graphs and edge-labelings: 1) for all graphs when

the edge-labelings consist of at most two finitely-generated ideals, and 2) for cycles when the edge-
labelings consist of principal ideals generated by elements of the form (ax+ by)2 in the polynomial

ring C[x, y]. We obtain the generators using a constructive algorithm that is suitable for computer

implementation and give several applications, including contextualizing several results in classical
(analytic) splines.

1. Introduction

Splines are a fundamental tool in applied mathematics and analysis, used in fields from data inter-
polation to computer graphics and design. They are traditionally defined as piecewise polynomials
on a combinatorial partition of a geometric object that agree up to some specified differentiability on
the intersection of the top-dimensional pieces of the partition. The most common example of these
combinatorial partitions in the literature is a polyhedral or simplicial decomposition of a suitable
region in Euclidean space.

This paper considers an algebraic generalization of classical splines: given a (combinatorial) graph
G with edges labeled by ideals in some fixed ring R, a spline is an R-labeling of the vertices so that the
labels on adjacent vertices u, v differ by an element of the ideal labeling the edge uv. This formulation
is due to work of the third author with Gilbert and Viel [GTV16], but was first used by Billera
[Bil88] and (in the context of equivariant cohomology) by Guillemin–Zara [GZ00, GZ01a, GZ01b].
The construction of generalized splines is essentially dual to the original definition of splines [Bil88,
Theorem 2.4]. For example, in the case of a triangulation of a region in the plane, the vertices of
G correspond to triangles of the triangulation, and the edge-relations correspond to differentiability
conditions across intersections of triangles. Both classical splines and generalized splines are used
to construct torus-equivariant cohomology [Pay06, GKM98]. (See Section 5 for more.)

One of the most important problems in the study of splines is to identify the dimension of the
spline space, interpreted either as the dimension of the vector space of classical splines of degree
at most d [AS87, AS90, Hon91, SSY19, SS02, Sch79, YS19, Str74] (see [LS07] for a survey in the
bivariate case) or as the (minimum) number of generators of the module of generalized splines
[AS19b, AS19a, BR91, DiP12, GZ01b, GZ03, BHKR15, GTV16, ACFG+20].

In this paper, we compute the number of generators of the module of splines over several families
of graphs for different collections of rings. Our most general result is Theorem 3.2, which gives
an algorithm using graph connectivity to compute a minimum set of generators for the module of
splines over any graph G with exactly two distinct edge labels. The only hypothesis on R is that it
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be a unique factorization domain (UFD). Theorem 3.1 specializes to the case when all edges of G
are labeled by the same ideal; in that case, if the ideal is principal then the module of splines is free
over R and its rank is precisely the number of vertices in G.

We then specialize R to be a polynomial ring, typically using the assumption that the edge-labels
are principal ideals generated by homogeneous splines of the same degree. These assumptions may
seem restrictive but are not (see Remark 2.8 and Sections 5.1 and 5.3 for a discussion). Indeed,
in all applications that we know, splines use polynomial rings as their base ring (except for certain
cases in number theory); furthermore, all known applications use principal ideals as edge-labels.
Moreover, the edge-labels used in spline constructions of equivariant cohomology arise as the weights
of torus actions on a geometric space, and are naturally homogeneous. Even in cases when the edge-
labels are not a priori homogeneous (as in analytic splines), we can homogenize (see Remark 5.10).
Corollary 5.9 proves that homogenization induces a natural vector space isomorphism between the
classical vector space of splines of degree at most d and the module of splines over the polynomial
quotient

C[x1, x2, . . . , xn]/〈all monomials in the xi of degree at most d+ 1〉

(considered as a complex vector space). Classical splines do not form a ring since multiplication
generally increases degree. However, identifying the vector space of classical splines with the elements
of this quotient space allows us to consider a ring structure on splines.

With these assumptions, we prove one other main result. Theorem 4.15 computes explicit (ho-
mogeneous) generators for all splines on cycles whose edges are labeled by polynomials of the form
(x+ ay)2 and shows that these splines cannot be obtained from fewer generators. Indeed, it shows
that these generators form a basis. This is a remarkably uniform result that depends only on the
number of distinct edge-labels, and not the underlying geometry.

Corollary 4.16. Suppose Cn is a cycle with n vertices and that each edge is labeled by a principal
ideal generated by a polynomial of the form (x+ ay)2. Then the module of splines has a basis of the
following form:

• If there is only one distinct edge-label: one homogeneous generator of degree zero and n− 1
of degree two.

• If there are two distinct edge-labels: one homogeneous generator of degree zero, n − 2 of
degree two, and one of degree four.

• If there are at least three distinct edge-labels: one homogeneous generator of degree zero,
n− 3 of degree two, and two of degree three.

We then provide applications related to the lower bound conjecture in the classical theory of
bivariate splines. The lower bound conjecture arises from an explicit polynomial in r, d that is
related to the dimension of the space of splines Srd(∆) for a large family of triangulations of a
given region ∆ of the plane (see Section 5.3 for a precise definition of Srd(∆)). Strang conjectured
that this polynomial computes the dimension of Srd(∆) for specific families of r, d, and ∆ [Str74].
Schumaker showed that the polynomial provides a lower bound for all r, d,∆ [Sch79]. Considerable
work has happened on this problem since: Alfeld and Schumaker showed that the polynomial gives
the dimension when d ≥ 4r + 1 [AS87], which Hong later tightened to d ≥ 3r + 2 [Hon91]; at the
same time, Billera proved Strang’s conjecture for r = 1 and d = 3 as long as the triangulation ∆
is generic [Bil88]. When r = 1 and d = 3, the lower bound formula consists of terms contributed
by boundary and interior vertices of the triangulation, a correction term for certain interior vertices
called “singular vertices,” and a constant term from polynomials defined on the entire triangulation
(not piecewise). Most mathematicians believe the formula actually computes the dimension of
S1

3(∆); there are no known counterexamples to this claim despite significant and ongoing efforts
[SS02, YS19, SSY19]. (See [LS07, Chapter 9] for more history and context.)

We give two results that provide a theoretical foundation contextualizing the lower bound formula:
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• Theorem 4.15, Lemma 5.13, and Corollary 5.15 give an alternative proof of Schumaker’s
characterization of splines on a single interior cell (namely “pinwheel triangulations” con-
sisting of a single interior vertex and a number of triangles incident to that vertex and
covering a small neighborhood around that vertex) [LS07, Theorems 9.3 and 9.12].

• Corollary 5.16 explains the correction term accounting for “singular vertices” in the lower
bound conjecture, as the unique geometrically realizable triangulations that correspond to
cycles with exactly two distinct edge-labels.

Acknowledgments. Michael DiPasquale’s assistance with Macaulay2 [GS] was invaluable to the
data collection that seeded this paper. The second author would also like to thank Cleo Roberts
and Claudia Yun for helpful discussions about splines.

2. Generalized splines on graphs

This section reviews the basic definitions and constructions that we use, including terminology
from graph theory and essential results about splines, including the definition of minimum generating
sets (MGSs). We state most results in this paper for splines on connected graphs because splines
for arbitrary graphs can be obtained from splines on the connected components via direct sum (see
Proposition 2.4).

2.1. Graphs. For a graph G = (V,E), we denote its (finite) set of vertices by V and its (finite) set
of edges by E. We write elements of E as pairs of distinct vertices; for example, e = uv is the edge
that joins vertex u and vertex v, and we say u and v are adjacent. (Note that uv = vu since edges
are unoriented.) Graphs in this paper have at most one edge between any given pair of vertices.

If G′ = (V ′, E′) is another graph such that V ′ ⊆ V and E′ ⊆ E, then G′ is called a subgraph of
G. The induced subgraph G[V ′] of V ′ is the graph with vertex set V ′ and edge set consisting of all
edges in E with both vertices in V ′. The neighborhood NG(V ′) of V ′ is the set of vertices in V that
are adjacent to at least one vertex in V ′. We also define the graph G− E′ := (V,E \ E′).

A path in G is a finite sequence of edges (u1u2, u2u3, . . . , un−2un−1, un−1un) such that each pair
of successive edges shares a vertex. A connected component of G is a subgraph G′ of G with the
property that any two vertices of G′ are joined by a path lying entirely in G′. If G has exactly one
connected component, then G is a connected graph.

Proposition 2.1. If G = (V,E) is a connected graph, then there is an ordering v1, . . . , v|V | on V
such that for every 1 < i ≤ |V | the vertex vi is adjacent to some vertex vj with j < i.

Proof. We proceed by induction on the number of vertices currently ordered. For the base case,
arbitrarily choose a first vertex v1 ∈ V . Now suppose that we have ordered v1, . . . , vk for some
1 < k < |V |. The induced subgraph G[{v1, . . . , vk}] is connected by the inductive hypothesis and is
not all of G. If NG({v1, . . . , vk}) were empty, then G[{v1, . . . , vk}] would be a connected component
of G. This contradicts the hypothesis that G is connected, so NG({v1, . . . , vk}) 6= ∅. Thus there is
some vk+1 ∈ NG({v1, . . . , vk}), and the claim holds by induction. �

2.2. Splines and minimum generating sets. Let R be a commutative UFD with identity denoted
by 1. Let I be the set of ideals of R. A function α : E → I is called an edge-labeling of G. We write
(G,α) to mean a graph together with an edge-labeling, and call it an edge-labeled graph. Note that,
we have suppressed explicit mention of the vertex set and edge set in the notation of an edge-labeled
graph, but these will always be clear from context.

Definition 2.2. Let (G,α) be an edge-labeled graph. A spline on (G,α) is a vertex-labeling
p ∈

⊕
v∈V R that satisfies the GKM condition:

for every edge e = uv ∈ E, the difference between
coordinates at the endpoints is pu − pv ∈ α(e).
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v1 v2

v3

〈i〉

〈j〉 〈j−i〉
p = (0, ij, j2)

Figure 1. An edge-labeled complete graph on three vertices together with a spline
p on it. Here i, j ∈ R.

We sometimes write a spline p = (pv1
, . . . ,pv|V |) as a |V |-tuple when we have a particular ordering

on V in mind. See Figure 1 for an example of a spline on an edge-labeled graph.

Remark 2.3. The name “GKM condition” (also appearing in [GTV16]) refers to work by Goresky,
Kottwitz, and MacPherson, where this condition appears while combinatorially computing the equi-
variant cohomology of certain varieties carrying well-behaved torus actions [GKM98].

We write RG,α for the set of splines on the edge-labeled graph (G,α). It is well known that RG,α
is itself a ring with identity [GTV16, Proposition 2.4]. The unit 1 ∈ RG,α is given by 1v = 1 for all
vertices v. (We call 1 the trivial spline.) Addition and multiplication in RG,α are defined pointwise;
that is, (p + q)v = pv + qv and (pq)v = pvqv for all v ∈ V . Moreover, RG,α carries the structure
of an R-module given by r · p = (rpv)v∈V for any r ∈ R.

The following proposition from [GTV16] confirms that our results extend from connected graphs
to arbitrary graphs. Recall if G′ = (V ′, E′) and G′′ = (V ′′, E′′) are graphs, then their union is
defined as

G′ ∪G′′ = (V ′ ∪ V ′′, E′ ∪ E′′).
Proposition 2.4 ([GTV16, Proposition 2.11]). Let (G′, α′) and (G′′, α′′) be two disjoint edge-labeled
graphs, namely V ′ ∩ V ′′ = ∅ and E′ ∩ E′′ = ∅. If G = G′ ∪ G′′ and α is the edge-labeling on G
defined by restricting to α′ on G′ and α′′ on G′′, then RG,α = RG′,α′ ⊕RG′′,α′′ .

In this paper, we present algorithms for producing minimum generating sets for RG,α for a variety
of edge-labeled graphs (G,α).

Definition 2.5. A generating set B for RG,α is a set of splines in RG,α which generates RG,α as an
R-module. The set B is called a minimum generating set (MGS) if it is a generating set with the
property that no other generating set has fewer elements than B.

The general question of when RG,α is a free R-module is complicated. In topological applications,
RG,α is typically assumed to be free—this is the main implication of equivariant formality, which
is one of the hypotheses in the machinery of GKM theory (see Section 5.1 or [GKM98, Tym05] for
more details). In analytic applications, they need not be (see, for example, [DiP12]). For the most
part we do not address this question, though the following lemma applies to several of our results.

Lemma 2.6. Let R be an integral domain and (G,α) be an edge-labeled graph. If B is an MGS for
RG,α that is triangular1 with respect to some vertex ordering v1, . . . , v|V | on V , then RG,α is a free
R-module with basis B.

Proof. Since the MGS B is triangular, it has at most |V | elements and we may order the basis
elements B = {bi1 ,bi2 , . . . ,bik′} so that bivj = 0 for all j < i and bivi 6= 0 for all i ∈ {i1, i2, . . . , ik′}.

Now suppose
∑

bi∈B cib
i = 0 is a linear dependence. We prove by induction on i that all ci are

zero—the base case, that ci1 = 0, is clear by triangularity. If ci = 0 for all i < i0, then we have∑
bi∈B

cib
i
vi0

= ci0b
i0
vi0
,

1An MGS B is (upper or lower) triangular with respect to a vertex ordering v1, . . . , v|V | on V if, after ordering
the entries of the elements of B according to the ordering on V , the matrix whose columns are the elements of B is a

(upper or lower) triangular matrix with nonzero diagonal entries.
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since all ci with i < i0 are zero by the inductive hypothesis and all bivi0 with i > i0 are zero by

triangularity. We assumed the displayed expression was zero, so ci0b
i0
vi0

= 0. But bi0vi0 is nonzero by

assumption and R is a domain, so ci0 is zero. The claim follows. �

The next result gives a lower bound on the number of elements of an MGS. (This lower bound
does not hold if R has zero divisors [BT15].)

Lemma 2.7. If R is an integral domain, then the number of elements of an MGS B is at least |V |.

Proof. If R is an integral domain and (G,α) is a connected edge-labeled graph, then the module
of splines RG,α contains a free R-submodule M generated by |V | elements [GTV16, Corollary 5.2].
Now consider the image of the R-modules RG,α ⊇ M under the map induced by including R into
its field of fractions. The image of M is a vector space of dimension |V | and the image of RG,α is a
vector space that both contains the image of M and is generated by the image of B. Thus there are
at least |V | elements in B. �

Remark 2.8. Many of our key results apply to edge-labelings by finitely-generated ideals. However,
our results treat principal ideals. We do this for two reasons. First, most applications of splines
use edge-labels that are principal ideals (see Section 5 for more). Second, our arguments usually
generalize easily to finitely-generated ideals. Indeed, the main step of many of our arguments uses
triangular MGSs in which each generator also satisfies biu ∈ {0, r} for all u ∈ V and some fixed
ring element r. In this context, it is straightforward to extend the main results of this paper from
edge-labels that are principal ideals to edge-labels that are finitely generated: instead of creating a
single spline bi for which bivi generates the principal ideal associated to an edge incident to vi, we

create a set of generators {bi,1,bi,2, . . . ,bi,k} that minimally generate the ideal associated to that
edge. (This kind of argument has been used previously in the literature [HT17, Propositions 2.4
and 2.6].) Expanding the generator set in this fashion gives analogous versions for edge-labelings
with finitely-generated ideals of Theorem 3.1, Theorem 3.2, and the dimension computations in
Corollary 4.12. We feel that sticking to principal ideals is innocent and leads to improved clarity in
the arguments throughout.

3. Algorithm to produce an MGS on edge-labeled graphs with one or two labels

In this section, we give an algorithm to produce an MGS for an arbitrary connected graph G
whenever the edge-labeling has at most two labels. As a warm-up, in Section 3.1, we treat the case
where the image of the edge-labeling α : E → I is a one-element subset {I} of I. In Section 3.2, we
treat the case of two edge-labels. Throughout this section, G denotes an arbitrary connected graph.

3.1. One edge-label. Let α : E → I be a constant edge-labeling function; that is, the image of α
consists of a single principal ideal I = 〈i〉. For a given v ∈ V , denote by Iv the indicator spline of
the ideal I at the vertex v. In other words, Iv is the spline with Ivv = i and Ivu = 0 for all u 6= v.

Theorem 3.1. Fix an ordering v1, . . . , v|V | on V as in Proposition 2.1, and let α : E → I be the
constant edge-labeling α(e) = I = 〈i〉 ∈ I for all e ∈ E.

Then the set B = {1, Iv2 , . . . , Iv|V |} is an MGS for RG,α. Moreover, if R is a domain then RG,α
is a free R-module with basis B.

Proof. Let p ∈ RG,α be an arbitrary spline. We claim that there exist r2, . . . , r|V | ∈ R such that

(1) p = pv1
1 + r2I

v2 + · · ·+ r|V |I
v|V | .

We will prove the following statement, which is equivalent to Equation (1): for every 2 ≤ j ≤ |V |,
there exists rj ∈ R such that pvj − pv1

= rj i. We proceed by induction on j.
When j = 2, Proposition 2.1 ensures that v2 is adjacent to v1. Thus there exists r2 ∈ R such

that pv2
− pv1

= r2i ∈ α(v2v1), as desired.
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Our inductive hypothesis states: if j ∈ {2, . . . , |V | − 1}, then for all k with 2 ≤ k ≤ j there exists
rk ∈ R such that pvk − pv1 = rki. By Proposition 2.1, the vertex vj+1 is adjacent to some v` with
1 ≤ ` ≤ j. If vj+1 is adjacent to v1, then the GKM condition ensures that there exists rj+1 ∈ R
with pvj+1

− pv1
= rj+1i as desired. Otherwise, the spline p− pv1

1− r`Iv` satisfies

(p− pv11− r`Iv`)u =

{
0 when u = v`,
pvi − pv1 when u = vi for i 6= `.

The GKM condition when u = vj+1 implies that there is some rj+1 ∈ R such that pvj+1
− pv1

=
rj+1i ∈ α(vj+1v`). Equation (1) follows by induction, so B is an MGS for RG,α by Lemma 2.7.

Finally, if R is a domain then Lemma 2.6 applies, proving that RG,α is free with basis B. �

3.2. Two edge-labels. Now suppose the edge-labeling α : E → I has image {I, J} ⊆ I with I = 〈i〉
and J = 〈j〉. The theorem below gives an algorithm for producing an MGS for RG,α. The basic idea
of the proof is to consider the neighbors of each vertex vi successively. If vi is connected to the first
i − 1 vertices only through paths with a single edge-label, then we can find a generator that uses
only that edge-label; otherwise, we need a generator that is an indicator spline with nonzero entry
given by the product of the two edge-labels.

Theorem 3.2. Let R be a UFD. Let (G,α) be a connected edge-labeled graph with edge-labeling
α : E → I having image {〈i〉, 〈j〉}. Choose an ordering on V as in Proposition 2.1. For every
1 < i ≤ |V |, define the spline bi as follows. Choose some vj ∈ NG({vi}) with j < i, and write
〈k〉 := α(vivj). Let

G′ = G− {uv ∈ E | α(uv) = 〈k〉},
and let C = (V ′, E′) be the connected component of G′ containing vi.

(a) If V ′ ⊆ {vi, vi+1, . . . , v|V |}, then set biu = k for all u ∈ V ′ and biu = 0 for all u 6∈ V ′.
(b) Otherwise, set bivi = lcm(i, j) and biu = 0 for all u 6= vi.

Then RG,α is a free R-module, and the set B = {1,b2, . . . ,b|V |} is a basis for RG,α.

Remark 3.3. Note that if the image of α is a single edge-label, then C always consists of the single
vertex vi and Case (b) never applies. Thus, Theorem 3.1 is a special case of Theorem 3.2.

Proof. We prove that B is an MGS for RG,α. Since R is a domain, Lemma 2.6 then implies the
claim.

We first show that bi is a spline in RG,α for all i > 1. If bi was produced by Case (a), then for
every edge uw ∈ E

biu − biw =

 k− k = 0 if both u,w are in V ′,
0− 0 = 0 if neither u,w are in V ′,
±(k− 0) = ±k if exactly one of u,w are in V ′.

The first two cases satisfy the GKM condition trivially; the last one does because here the edge uw
was deleted from G to form G′, so α(uw) = 〈k〉. If bi was produced by Case (b), then for every edge
uw ∈ E the difference biu − biw is either zero or a nonzero element of I ∩ J . Thus, bi satisfies the
GKM condition.

Now we show that B = {1,b2, . . . ,b|V |} is an MGS for RG,α. Let p ∈ RG,α be an arbitrary
spline. We claim that there exist r2, . . . , r|V | ∈ R such that

(2) p = pv11 + r2b
2 + · · ·+ r|V |b

|V |.

For the base case, first note that the spline p− pv1
1 satisfies (p− pv1

1)v1
= 0, so pv1

1 agrees with
p at the first vertex. Now assume that we can find coefficients r2, . . . , rm ∈ R so that the spline
pv1

1 + r2b
2 + · · ·+ rmbm agrees with p when evaluated at the first m vertices.

By Proposition 2.1, there is some vk ∈ NG({vm+1}) with k < m+ 1. Without loss of generality,
assume α(vm+1vk) = 〈i〉. Then either

(i) pvm+1
− pvk ∈ I ∩ (I ∩ J)c or
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(ii) pvm+1 − pvk ∈ I ∩ J .

We show that these two cases correspond to Cases (a) and (b), respectively, in the statement of
the theorem. Suppose Case (b) applies, namely there is a path between vm+1 and one of the
vertices v1, . . . , vm all of whose edges are labeled J . The GKM conditions along this path imply that
pvm+1

−pvk ∈ J . This forces the spline to have the form in Case (ii). Otherwise Case (a) applies and
thus Case (i) is possible. In both cases, there exists rm+1 so that pv11+r2b

2+· · ·+rmbm+rm+1b
m+1

agrees with p when evaluated at the first m+ 1 vertices, as desired.
By induction, Equation (2) holds; thus, B is a set of |V | generators for RG,α. Lemma 2.7 guar-

antees that any MGS for RG,α has at least |V | elements, so B is an MGS for RG,α. �

Example 3.4. Consider the edge-labeled graph

v1 v2

v3 v4

〈i〉

〈j〉 〈j〉

〈i〉

. Note that we have chosen an

ordering on the vertices as in Theorem 3.2 (or Proposition 2.1).
To produce b2, we look at all vertices that are connected to v2 by paths labeled exclusively 〈j〉.

This gives the set C ′ = {v2, v4}. Thus we are in Case (a), so b2 is zero on {v1, v3} and i otherwise.
Similarly, to find b3 we get the connected component C ′ = {v3, v4} and are again in Case (a). In

this case, b3 is zero on {v1, v2} and j otherwise.
However, when constructing b4 we find that C ′ = {v2, v4}. Thus b4 is lcm(i, j) on v4 and zero

otherwise.
The set B = {1,b2,b3,b4} is an MGS for RG,α by Theorem 3.2.

Remark 3.5. The previous example describes the cycles that correspond to what are called singular
vertices in the literature on splines. See Section 5 for more.

4. Polynomial splines on cycles

In Section 3, we produced MGSs for arbitrary connected graphs, as long as there were at most
two edge-labels. In this section, we treat an arbitrary number of edge-labels, but we restrict the
types of graphs and ideals under consideration.

4.1. Degree sequences for splines. Let R = k[x1, . . . , xm] with k a field, and let (G,α) be an
arbitrary edge-labeled graph. Recall that throughout this paper, we assume that all ideals in the
image of α are principal (see Remark 2.8). We now add the assumption that the ideals are generated
by homogeneous elements and introduce an invariant of (G,α) called the “degree sequence”. (As
described in the introduction and in Section 5, homogeneity is a very natural condition in geometric
and analytic applications.)

Definition 4.1. An MGS B = {b1, . . . ,bn} is called homogeneous if, for each 1 ≤ i ≤ n, every
nonzero entry of bi is a homogeneous polynomial of the same degree, which we denote as deg bi.

Definition 4.2. Let B be a homogeneous MGS. For each j ∈ Z≥0, let dj =
∣∣{b ∈ B | deg b = j}

∣∣.
Then the degree sequence of B is defined as dB = (d0, d1, d2, d3, . . .).

Remark 4.3. The degree sequence only has a finite number of nonzero entries. For instance, when
edge-labels are principal ideals, no generator need have larger degree than that of the product of
the edge-labels. In particular, dm = 0 if m is greater than the sum of the degrees of the edge-labels.
(See also [GTV16, Corollary 5.2].)

For the remainder of the paper, we only consider principal ideals generated by degree-two elements
of the form (x + ay)2 with 0 6= a ∈ k. (See Section 5 for how this case appears in the study of
classical analytic splines.) For convenience, we denote these edge-labels using a sans-serif letter; for
example, we write a := (x+ ay)2.
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Example 4.4. Let k be a field, and let R = k[x, y]. Consider the edge-labeled graph (G,α) given
by

v1 v2

v3 v4

〈a〉

〈b〉 〈b〉

〈a〉

where 0 6= a, b ∈ k. This is a specialization of the edge-labeled graph in Example 3.4. Theorem 3.2
asserts that

B = {1, (0, a, 0, a), (0, 0, b, b), (0, 0, 0, ab)}
is a homogeneous MGS for RG,α. The degree sequence of B is thus dB = (1, 0, 2, 0, 1).

We next prove that the degree sequence is an invariant of an edge-labeled graph.

Proposition 4.5. Let (G,α) be a connected edge-labeled graph with edges labeled by principal poly-
nomial ideals with homogeneous generators. Let B and B′ be two homogeneous MGSs for RG,α with

degree sequences dB and dB′ , respectively. Then dB = dB′ .

Proof. Let B = {b1, . . . ,bn} and B′ = {b1′, . . . ,bn′} be two homogeneous MGSs for RG,α with

degree sequences dB = (d0, d1, d2, . . .) and dB′ = (d′0, d
′
1, d
′
2, . . .). (If needed, add terminal zeros so

both sequences have the same length.) We show that dr = d′r for each r by induction on the index r
and prove as our base case that d0 = d′0. The degree-zero splines in RG,α generate a k-vector space.
The degree-zero splines in B form an MGS for the degree-zero splines in RG,α, and likewise for B′.
Since MGSs in vector spaces are bases, and in particular have the same number of elements, the
base case of our induction holds. Now assume that d0 = d′0, d1 = d′1, . . . , dr−1 = d′r−1.

Given bi
′ ∈ B′, we can write bi

′
= ki,1b

1+ki,2b
2+· · ·+ki,nbn for some coefficients ki,1, . . . , ki,n ∈

R. Note that ∑
bj∈B

deg bi′<deg bj

ki,jb
j = 0,

so we may assume ki,j = 0 for all deg bi
′
< deg bj . It follows that

{bi′ ∈ B′ | deg bi
′ ≤ r} ⊆ span({bi ∈ B | deg bi ≤ r}).

A symmetric argument shows that

{bi ∈ B | deg bi ≤ r} ⊆ span({bi′ ∈ B′ | deg bi
′ ≤ r}).

This contradicts minimality of B or B′ unless
∑r
i=0 di =

∑r
i=0 d

′
i. By the inductive hypothesis, this

implies dr = d′r. �

4.2. Linear algebraic background. We use the following two linear-algebraic results about the
k-vector space of polynomials.

Lemma 4.6. Let a, b, c, d,D ∈ k, with a, b, c distinct. Then we can find unique A,B,C ∈ k such
that

(3) Aa +Bb + Cc = Dd.

Proof. We rewrite Equation (3), collecting coefficients, as

(A+B + C)x2 + (2aA+ 2bB + 2cC)xy + (a2A+ b2C + c2C)y2 = Dx2 + 2Ddxy +Dd2y2.

Solving for A,B,C amounts to solving the following system of linear equations:

A+B + C = D

2aA+ 2bB + 2cC = 2dD

a2A+ b2B + c2C = d2D.
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The coefficient matrix  1 1 1
2a 2b 2c
a2 b2 c2


can be reduced to the identity matrix via elementary row operations. (Some of the row operations
require division, but we avoid division by zero because a, b, c are distinct.) This implies that the
coefficient matrix is invertible; thus, there exists a unique solution to the system of equations. �

Lemma 4.7. Let a, b, c, C1, C2 ∈ k, with a and b distinct. There exist unique A1, A2, B1, B2 ∈ k
such that

(4) (A1x+A2y)a + (B1x+B2y)b = (C1x+ C2y)c.

Proof. Expanding Equation (4) and equating coefficients of like terms leads to the following system
of linear equations:

A1 +B1 = C1

2aA1 +A2 + 2bB1 +B2 = 2cC1 + C2

a2A1 + 2aA2 + b2B1 + 2bB2 = c2C1 + 2cC2

a2A2 + b2B2 = c2C2.

The coefficient matrix 
1 0 1 0
2a 1 2b 1
a2 2a b2 2b
0 a2 0 b2


can be reduced to the identity matrix via elementary row operations. (Some of the row operations
require division, but we avoid division by zero because a 6= b.) This implies that the coefficient
matrix is invertible; thus, there exists a unique solution to the system of equations. �

4.3. Constructions to reduce graphs. A product module has a collection of forgetful maps to
different factors in the module. Suppose (G′, α′) is an edge-labeled graph obtained from another
edge-labeled graph (G,α) by adding a single vertex v together with some labeled edges from v to
vertices in G. Then we can use the forgetful map to relate the splines on (G′, α′) to those on (G,α).

This is what we do in the next result. We then specialize to the case of cycles in Corollary 4.12.
We note that Lemma 4.8 below also applies to general edge-labelings α, which we will restrict in
more ways throughout this section.

Lemma 4.8. Suppose that (G,α) and (G′, α′) are edge-labeled graphs with vertices V ′ = V ∪ {v},
edges

E′ = E ∪ {vu | u ∈ U}
where U ⊆ V is nonempty, and edge-labeling α′|E = α. Then the projection map

⊕
u∈V ′ R →⊕

u∈V R induces an R-module homomorphism ϕ : RG′,α′ → RG,α, and

RG′,α′ ∼= kerϕ⊕ imϕ.

Moreover, suppose that every pair u, u′ ∈ U is connected by a path of edges in E all labeled I, and
suppose that α′(vu) = I for all u ∈ U . Then

RG′,α′ ∼= I ⊕RG,α.

Proof. We first show that restricting a spline p in RG′,α′ to the set of vertices V produces a spline
in RG,α. Indeed, for each edge uu′ ∈ E we have

pu − pu′ ∈ α′(uu′) = α(uu′).
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Thus the projection map induces an R-module homomorphism ϕ : RG′,α′ → RG,α. We conclude
that

RG′,α′ ∼= kerϕ⊕ imϕ.

Now we consider the special case where every pair u, u′ ∈ U is connected by a path of edges in E
all labeled I, and α′(vu) = I for all u ∈ U . Note that kerϕ consists of all splines in RG′,α′ that are
zero at all of V . Consider a spline in kerϕ. If at least one edge incident to v is labeled I, then the
vertex v must be labeled by an element of I by the GKM condition; if all edges incident to v are
labeled I, then every element of I works. Thus kerϕ ∼= I.

Given a spline q ∈ RG,α, we define p ∈ RG′,α′ such that ϕ(p) = q according to the rule pu = qu
for all u ∈ V and pv = qu′ for some u′ ∈ U . The GKM condition implies that qu − qu′ ∈ I for
any u ∈ U , since u and u′ are connected by a path of edges labeled I by hypothesis. Thus, we have
pu−pv = qu−qu′ ∈ I for all u ∈ U . By inspection of the GKM conditions, we conclude p ∈ RG′,α′
and thus imϕ ∼= RG,α. �

We can (and will) use Lemma 4.8 to eliminate those vertices whose incident edges all have the
same label. This leads us to the following definition.

Definition 4.9. An edge-labeled graph is called reduced if no two edges that are incident to the
same vertex have the same edge-label.

We note that the edge-labels in a reduced cycle have to be at least somewhat evenly distributed,
in the following sense.

Lemma 4.10. Suppose (G,α) is a reduced edge-labeled graph. Moreover, suppose (G,α) con-
tains n distinct vertices v0, v1, v2, . . . , vn = v0 that form a cycle with three or more distinct edge
labels. Then there is at least one sequence of three successive distinct edge-labels on the edges
v1v2, v2v3, . . . , vn−1vn, vnv1.

Proof. Read clockwise around the cycle starting at an arbitrary edge, and suppose the first two edges
are labeled I and J . If a sequence of three successive edge-labels does not contain three distinct
edge-labels, then it must alternate between two of them since the graph is reduced. An edge-label
that is neither I nor J appears somewhere on the graph by hypothesis of at least three distinct
edge-labels. Look at the first occurrence of this edge-label in the sequence; the two edges preceding
it have labels from the set {I, J}, without repetition. This proves the claim. �

In the next lemma, we refine Lemma 4.8 to keep track of MGSs. Note that it assumes edge-
labelings by principal ideals in UFDs, not necessarily polynomials.

Lemma 4.11. Let (G,α) and (G′, α′) be defined as in Lemma 4.8, with the condition that every
pair u, u′ ∈ U is connected by a path of edges in E all labeled 〈i〉 and α′(vu) = 〈i〉 for all u ∈ U .
Let |V | = n and fix some u′ ∈ U . If B = {b1,b2, . . . ,bn} is an MGS for RG,α, then B′ =

{b1′,b2′, . . . ,bn′,bn+1}, where

biu
′

=

{
biu if u ∈ V,
biu′ if u = v,

and

bn+1
u =

{
0 if u ∈ V,
i if u = v,

is an MGS for RG′,α′ .

Proof. It is clear that bn+1 is a spline in RG′,α′ . If ϕ is the map from Lemma 4.8, then ϕ(bi
′
) = bi

for all 1 ≤ i ≤ n by construction, so (the last paragraph of the proof of) Lemma 4.8 implies that

bi
′ ∈ RG′,α′ again for all 1 ≤ i ≤ n.
We now show that B′ is a generating set for RG′,α′ . Each spline p ∈ RG′,α′ satisfies

(5) pv = pu′ + ki
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for some k ∈ R by the GKM condition for the edge vu′. The spline ϕ(p) is an element of RG,α with

(6) ϕ(p)u = pu for all u ∈ V.
Because B is an MGS for RG,α, we can write ϕ(p) as a linear combination

(7) ϕ(p) = r1b
1 + r2b

2 + · · ·+ rnbn,

where each ri ∈ R. For all u ∈ V , we have

pu = ϕ(p)u by Equation (6),

= r1b
1
u + r2b

2
u + · · ·+ rnbnu + k · 0 by Equation (7),

= r1b
1
u
′
+ r2b

2
u
′
+ · · ·+ rnbnu

′ + kbn+1
u by the definition of B′.

Furthermore,

pv = pu′ + ki by Equation (5),

= r1b
1
u′ + r2b

2
u′ + · · ·+ rnbnu′ + ki by the previous argument,

= r1b
1
v
′
+ r2b

2
v
′
+ · · ·+ rnbnv

′ + kbn+1
v by the definition of B′.

We have obtained the equation

p = r1b
1′ + r2b

2′ + · · ·+ rnbn′ + kbn+1,

which assures that B′ is a generating set for RG′,α′ .
Moreover, the set B′ is an MGS by Lemma 2.7 because it consists of n+ 1 elements and G′ is a

graph with n+ 1 vertices. �

We now apply the ideas in the previous lemma to the case of cycles, which is the special case on
which we focus.

Corollary 4.12. Let (Cn, αn) be an edge-labeled n-cycle. Create an edge-labeled (n + 1)-cycle
(Cn+1, αn+1) from (Cn, αn) by inserting a vertex vn+1 into the edge vnv1 with both new edges vnvn+1

and vn+1v1 labeled the same as vnv1 was. Then

RCn+1,αn+1
∼= αn(vnv1)⊕RCn,αn .

Moreover, suppose (Cn, αn) has edges labeled with principal ideals generated by homogeneous polyno-
mials, that (Cn, αn) has MGS B, and that the generator of the edge-label αn(vnv1) is a homogeneous
polynomial of degree e. Then (Cn+1, αn+1) has an MGS B′ that

(1) extends B in the sense that if ϕ is the map from Lemma 4.8 then ϕ(B′) ⊇ B,
(2) has exactly one more generator than B′ and the degree of this additional generator is e, and
(3) is minimal in the sense that if B′′ is any other generating set that extends B then B′′ has at

least one more element of degree e than B (and possibly other additional elements of other
degrees).

In particular, the degree sequence of B′ satisfies

dB′ = dB +
(
0e−1, 1, 0m−e

)
.

Proof. Taking (G,α) to be (Cn, αn) and (G′, α′) to be the (non-cyclic) edge-labeled graph formed
from (Cn, αn) by adding a new vertex vn+1 and new edges vnvn+1 and vn+1v1 labeled the same as
vnv1, we can apply Lemma 4.8 to conclude

RG′,α′ ∼= αn(vnv1)⊕RCn,αn .

Note that RG′,α′ ⊆ RCn+1,αn+1
because (G′, α′) consists of the edge-labeled graph (Cn+1, αn+1)

together with precisely one additional edge. The three edges vnv1, vnvn+1, and vn+1v1 in (G′, α′) all
have the same label, so every spline in RCn+1,αn+1 satisfies the GKM conditions on (G′, α′). Thus
RG′,α′ ∼= RCn+1,αn+1 . In particular, if αn(vnv1) is a principal ideal generated by a homogeneous
polynomial of degree e and if B is an MGS of (Cn, αn), then Lemma 4.11 constructs an MGS for
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(Cn+1, αn+1) that satisfies Conditions (1) and (2) of our claim. The explicit description of the degree
sequence dB′ of (Cn+1, αn+1) follows from the definition of degree sequence and from Conditions (1)
and (2). The minimality in Condition (3) follows from the direct sum decomposition

RCn+1,αn+1
∼= αn(vnv1)⊕RCn,αn

since any generating set B′′ that extends B needs at least one additional element of degree e to
generate αn+1. �

4.4. Producing an MGS for polynomial edge-labeled cycles. We now construct an algorithm
that produces a homogeneous MGS for cycles whose edges are labeled by principal polynomial ideals
with generator of the form a := (x + ay)2 for a 6= 0. Part of our proof proceeds by induction; the
following lemma proves the base case of a triangle.

Lemma 4.13. Let (G,α) be a 3-cycle with edge-labeling α : E → I having α(v1v2) = 〈a〉, α(v2v3) =
〈b〉, and α(v3v1) = 〈c〉 so that a, b, c are all distinct. Let f1, f2, g1, g2 ∈ k[x, y] denote the homoge-
neous degree-one polynomials with xa = f1b+ g1c and ya = f2b+ g2c that are guaranteed by Lemma
4.7. Then the set

B = {1,b2,b3} = {1, (0, xa, g1c), (0, ya, g2c)}
is a homogeneous basis for RG,α.

Proof. We will prove that B is a homogeneous MGS that is also free. Note that (0, xa, g1c) is a
spline: the GKM condition on the edges labeled a and c are trivially satisfied, and the condition on
the edge labeled b is satisfied because xa = f1b + g1c. The same argument shows that (0, ya, g2c) is
a spline. Moreover, the GKM condition for spline b2 on edge v2v3 implies g1 6= x since b = (x+ by)2

cannot divide the polynomial

xa− xc = xy(2ax− 2cx+ a2y − c2y)

by direct computation (or by noting that both b and the right-hand side of the displayed equation
are factored into irreducibles, and that the polynomial ring k[x, y] is a UFD). A similar argument
shows g2 6= y.

Now we demonstrate that B generates the spline (0, 0, bc). We have

yg1c = xya− yf1b and xg2c = xya− xf2b.

Subtracting, we obtain the equality

(yg1 − xg2)c = (xf2 − yf1)b.

If (yg1−xg2)c = 0 then the degree-two factor yg1−xg2 is identically zero, and so g1 = rx and g2 = ry
for some scalar r. Plugging this back into the equation yg1c = xya − yf1b and then rearranging,
we obtain x(a − rc) = f1b and similarly y(a − rc) = f2b. Multiplying these two equations by y
and x respectively, we obtain yf1 = xf2. Analyzing degree constraints once more, we conclude
f1 = sx and f2 = sy for some scalar s. Plugging this back into the equation xa = f1b+ g1c, we have
xa = sxb + rxc. In particular a = sb + rc, which contradicts the linear independence of a, b, and c
over k proved in Lemma 4.6.

Thus (yg1 − xg2)c is a homogeneous degree-four polynomial that is divisible by both b and c. It
must be a scalar multiple of bc because b and c have no irreducible factors in common. Consequently,
the spline

q := yb2 − xb3 = (0, 0, (yg1 − xg2)c)

is a nonzero scalar multiple of (0, 0, bc).
Now we show the generators are actually free, namely that if

p11 + p2b
2 − p3b

3 = (0, 0, 0)

then pi = 0 for all i ∈ {1, 2, 3}. The first coordinate shows that p1 = 0 since on the left-hand side
we have (

p11 + p2b
2 − p3b

3
)
v1

= p11v1
+ 0− 0 = p1.
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Using p1 = 0 and the explicit equations for b1,b2, we obtain

(0, p2xa− p3ya, p2g1c− p3g2c) = (0, 0, 0).

Since p2xa − p3ya = 0 in a UFD, we conclude as above that x divides p3 and y divides p2. Write
p3 = p′3x and p2 = p′2y. Then we have

p′2yxa− p′3xya = (p′2 − p′3)xya = 0

and so p′2 = p′3. Now examining the last coordinate, we see

p′2yg1c− p′3xg2c = (p′2) ((yg1 − xg2)c) = 0.

We just proved that (yg1 − xg2)c is a nonzero scalar multiple of bc, so this entry is zero if and only
if p′2 = 0. Hence all pi are zero, as desired.

Finally we show that B generates an arbitrary spline p ∈ RG,α. We have

p− pv1
1 = (0,pv2

− pv1
,pv3

− pv1
).

By the GKM conditions on edges v1v2 and v3v1, we have pv2 − pv1 = ka and pv3 − pv1 = `c for
some k, ` ∈ k[x, y]. The GKM condition on edge v2v3 gives the equation

(pv2
− pv1

)− (pv3
− pv1

) = ka− `c = `′b

for some `′ ∈ k[x, y]. Lemma 4.6 showed that a, b, and c are linearly independent over the base field
k, so the only scalar solution to ka − `c − `′b = 0 is k = ` = `′ = 0. Thus k, `, `′ are polynomials
without constant terms. Assume that h1, h2 ∈ k[x, y] satisfy k = h1x+ h2y. We have

pv2 − pv1 = (h1x+ h2y)a

and

p− pv1
1− h1b

2 − h2b
3 = (0, 0,pv3

− pv1
− h1g1c− h2g2c).

The nonzero entry in this spline must be a multiple of both b and c by the GKM conditions on edges
v2v3 and v3v1, respectively. Hence

p− pv11− h1b
2 − h2b

3 = tq

for some t ∈ k[x, y] because we showed above that q is a scalar multiple of (0, 0, bc). We conclude
that B generates RG,α. Lemma 2.7 asserts that B is an MGS as desired. �

The heart of the proof of Theorem 4.15, our main theorem about cycles, is the following lemma.
After proving the lemma, Theorem 4.15 will follow easily by applying the reduction lemmas from
Section 4.3.

Lemma 4.14. Let (G,α) be an edge-labeled n-cycle containing a sequence of three successive distinct
edge-labels. Order the vertices v0, v1, v2, . . . , vn = v0 of (G,α) clockwise around the cycle such that
α(vi−1vi) = 〈ai〉 and an−1, an, and a1 are all distinct.

We give an explicit homogeneous MGS B = {1,b2, . . . ,bn} for RG,α as follows. For every
1 < i ≤ n−2, let ai,n−1, ai,n, ai,1 ∈ k be the base field elements with ai = ai,n−1an−1 +ai,nan+ai,1a1

that are guaranteed by Lemma 4.6, and define bi by

bivj =


0 if j < i,
ai if i ≤ j ≤ n− 2,
ai − ai,n−1an−1 if j = n− 1,
ai − ai,n−1an−1 − ai,nan if j = n.

As in Lemma 4.13, let f1, f2, g1, g2 ∈ k[x, y] denote the homogeneous degree-one polynomials with
xan−1 = f1an + g1a1 and yan−1 = f2an + g2a1 that are guaranteed by Lemma 4.7. Define bn−1 by

bn−1
vj =

 0 if j ≤ n− 2,
xan−1 if j = n− 1,
g1a1 if j = n,
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and bn by

bnvj =

 0 if j ≤ n− 2,
yan−1 if j = n− 1,
g2a1 if j = n.

Then B = {1,b2, . . . ,bn} is a homogeneous basis for RG,α as a free module over the polynomial
ring. Consequently, the degree sequence of (G,α) is (1, 0, n− 3, 2).

Proof. We will check that B is a homogeneous MGS and that it is free, whence we will conclude
that it is a homogeneous basis for the free module RG,α.

We first check that bi is a spline in RG,α for all i > 1. For the bi with 1 < i ≤ n− 2 this is clear
by the definition of bi, and for bn−1 (respectively bn) this follows from the GKM condition together
with rewriting the defining equation as xan−1 − g1a1 = f1an (respectively as yan−1 − g2a1 = f2an).

Now we show that B generates an arbitrary spline p ∈ RG,α. We claim that there exist
r1, r2, . . . , rn ∈ k[x, y] such that

(8) p = r11 + r2b
2 + · · ·+ rnbn.

For this, it is sufficient to prove that for all 1 ≤ m ≤ n, we can find coefficients r1, r2, . . . , rm ∈ k[x, y]
such that the spline r11+r2b

2 + · · ·+rmbm agrees with p when evaluated at the first m vertices. We
will use induction up to n−2, then deal with bn−1 and bn separately. For the base case, note that the
spline p−pv1

1 has (p−pv1
1)v1

= 0. The inductive hypothesis asserts that we can find coefficients
r1, r2, . . . , rm ∈ k[x, y] with m < n − 2 so that the spline r11 + r2b

2 + · · · + rmbm agrees with p
when evaluated at the first m vertices. In other words, assume we have found r1, r2, . . . , rm ∈ k[x, y]
with m < n− 2 such that

(p− r11− r2b
2 − · · · − rmbm)vj = 0

for all j ≤ m. Thus by the GKM condition on edge vmvm+1, there exists rm+1 ∈ k[x, y] such that

(p− r11− r2b
2 − · · · − rmbm)vm+1 = rm+1am+1.

Hence the spline r11 + r2b
2 + · · · + rmbm + rm+1b

m+1 agrees with p when evaluated at the first
m + 1 vertices, as desired. By induction, we have produced r1, r2, . . . , rn−2 ∈ k[x, y] such that
r11 + r2b

2 + · · ·+ rn−2b
n−2 agrees with p when evaluated at the first n− 2 vertices.

To conclude the proof, we essentially follow the same argument as in the proof of Lemma 4.13.
Indeed, suppose (T, α′) is the edge-labeled 3-cycle with vertices v1, vn−1, vn, and with edge-labeling
given by α′(v1vn−1) = 〈an−1〉, α′(vn−1vn) = 〈an〉, and α′(vnv1) = 〈a1〉. Let G be the subset of
RG,α in which all vertices v1, v2, . . . , vn−2 are labeled zero. Note that G is isomorphic to the subset
of RT,α′ in which vertex v1 is labeled zero, via the map G → RT,α′ that erases the initial n − 1
zeros from each spline p ∈ G. Thus inserting n− 1 leading zeros into the nontrivial generators from
Lemma 4.13 gives generators for G.

It follows that B generates RG,α. Indeed, we first proved that for any spline p ∈ RG,α we can

find a unique linear combination of the splines {1,b1, . . . ,bn−2} so that p− r01−
∑n−2
i=1 rib

i is zero
when evaluated at the first n−2 vertices. Lemma 4.13 then proved that if a spline in RG,α is zero at
the first n−2 vertices, it is uniquely generated by {bn−1,bn}. The generating set B is thus minimal
and a free set of generators for the module of splines RG,α over the polynomial ring.

Finally, the statement on the degree sequence follows because 1 is a degree-zero spline, bi is a
degree-two spline for all 1 < i ≤ n− 2, and bn−1 and bn are both degree-three splines. �

Theorem 4.15. Let (Cn, αn) be an n-cycle with three or more distinct (not necessarily successive)
edge-labels. The following algorithm constructs a homogeneous MGS Bn for RCn,αn :

(1) Let Cn−k be the reduced cycle with edge-labeling αn−k obtained from Cn by eliminating
vertices whose incident edges have the same label.

(2) Let Bn−k be the homogeneous MGS for RCn−k,αn−k
from Lemma 4.14.

(3) Create Bn from Bn−k by successively reinserting vertices on repeated edges according to
Corollary 4.12.
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Proof. The reduced cycle Cn−k is guaranteed by Corollary 4.12. Three successive distinct edge-
labels are guaranteed to exist in a reduced cycle by Lemma 4.10. Thus we may apply Lemma 4.14
to obtain the homogeneous MGS Bn−k for RCn−k,αn−k

. Reinserting each repeated edge according to
Corollary 4.12 (with explicit formula given in Lemma 4.11) gives a generating set for Cn. Because it
has the same number of elements as vertices, the final output Bn is an MGS for Cn per Lemma 2.7.

�

Example 4.17 shows an example of how to use the algorithm in Theorem 4.15 to produce a homo-
geneous MGS. First, we give the following corollary, which classifies degree sequences for all splines
on cycles whose edge-labels are principal ideals generated by homogeneous degree-two polynomials
in k[x, y].

Corollary 4.16. Let G = (V,E) be an n-cycle and let I be the set of principal ideals of R = k[x, y]
of the form 〈(x + ky)2〉, where k ∈ k. Let α : E → I be an edge-labeling of G. Then the following
hold:

(1) If (G,α) has exactly one distinct edge label, then its degree sequence is (1, 0, n− 1).
(2) If (G,α) has exactly two distinct edge labels, then its degree sequence is (1, 0, n− 2, 0, 1).
(3) If (G,α) has three or more distinct edge labels, then its degree sequence is (1, 0, n− 3, 2).

Proof. We prove each of (1)–(3) separately.
Proof of (1). This is an immediate consequence of Theorem 3.1: in the MGS {1, Iv2 , . . . , Iv|V |},

the trivial spline 1 is a degree-zero spline and each of the (|V | − 1)-many Ivi is a degree-two spline.
Proof of (2). The proof is essentially an analysis of the MGS B produced by Theorem 3.2 for a

certain nice vertex ordering. Since (G,α) has exactly two distinct edge-labels, we choose an ordering
of the vertices satisfying Proposition 2.1 by choosing the last vertex vn ∈ V to be any vertex incident
to two edges with different labels; the vertex v1 is chosen as the next vertex clockwise from vn, and
we continue choosing vertices v2, . . . , vn−1 clockwise until all vertices have been ordered. Without
loss of generality, suppose that α(vn−1vn) = 〈b〉 and α(vnv1) = 〈a〉.

vn

vn−1 v1

vn−2 v2

〈a〉〈b〉

〈a〉 or 〈b〉〈a〉 or 〈b〉

Figure 2. The idea of the proof of (2).

We claim that

• 1 is a degree-zero spline,
• bi is a degree-two spline for all 2 ≤ i < n, and
• bn is a degree-four spline.

The first assertion is clear. For the second assertion, let us assume that while producing bi using
Theorem 3.2, we chose vj = vi−1.

Case 1: The edge-label α(vivi−1) = 〈a〉.
Case 2: The edge-label α(vivi−1) = 〈b〉.

The graph C = (V ′, E′) has vertex set V ′ a subset of the set {vi, vi+1, . . . , vn} in Case 1 (resp.
{vi, vi+1, . . . , vn−1} in Case 2). In both cases, Theorem 3.2 (a) must have been applied in the
production of bi, so the spline bi is a degree-two spline, and we have verified the second assertion.

For the third assertion, we again assume that while producing bn using Theorem 3.2, we chose
vj = vi−1 = vn−1. Now the graph C contains the edge vnv1, so Theorem 3.2 (b) must have been
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applied in the production of bn. Hence bn is a degree-four spline, and we have verified the third
and final assertion.

Proof of (3). This is a consequence of Theorem 4.15. By Corollary 4.12, the homogeneous MGS
Bn−k for RCn−k,αn−k

has degree sequence (1, 0, n−k−3, 2). For every 0 ≤ j ≤ k−1, the homogeneous
MGS Bn−k+(j+1) for RCn−k+(j+1),αn−k+(j+1)

has degree sequence (1, 0, n−k+(j+1)−3, 2). After all

iterations (when j = k−1), we obtain the homogeneous MGS Bn with degree sequence (1, 0, n−3, 2)
as desired. �

Example 4.17. We produce a homogeneous MGS B6 for the following edge-labeled six-cycle by
using the algorithm in Theorem 4.15.

•

• •

• •

•

〈k〉 〈i〉

〈k〉 〈i〉

〈j〉 〈j〉

Figure 3. An edge-labeled six-cycle.

In Figure 4 below, we show one picture for each iteration through Steps (a)–(c) in Theorem 4.15
along with the associated homogeneous MGS obtained during that iteration.

5. Applications

The purpose of this section is to connect the theoretical apparatus of the previous parts of the
paper to classical questions in the study of analytic splines. We show that our hypothesis on the
homogeneity of polynomial splines in Section 4 is a very common one. In fact, it is satisfied by
all graphs arising from GKM constructions of equivariant cohomology (see Proposition 5.2) and by
most classical (analytic) applications of splines (see Remark 5.10). We then use our results to recover
well-known results that classify splines on “pinwheel” triangulations in the plane.

5.1. Splines and GKM theory. One important application of the class of splines to which the
results of this paper apply is the equivariant cohomology rings that arise from so-called GKM theory.
In the rest of this section, we describe these rings.

GKM theory describes an algebraic-combinatorial construction of the torus-equivariant cohomol-
ogy of certain algebraic varieties. GKM theory applies to any complex projective algebraic variety
X that admits the action of a complex torus T ∼= (C∗)n with the following conditions (sometimes
called the GKM conditions):

• There are finitely many T -fixed points in X.
• There are finitely many one-dimensional T -orbits in X.
• The variety X is equivariantly formal with respect to the T -action.

We omit a precise definition of equivariantly formal, which can be found elsewhere in the literature
[GKM98, Tym05]. However, we note that the condition is satisfied by many varieties of interest,
including varieties with no odd-dimensional ordinary cohomology. Moreover, equivariant formality
implies that the equivariant cohomology H∗T (X) is a free C[t1, . . . , tn]-module. In fact, there is an
isomorphism

H∗T (X) ∼= C[t1, . . . , tn]⊗H∗(X).

(The variables t1, . . . , tn denote the linearized coordinates of the torus, and are equivalent to the
x1, . . . , xn in the polynomial splines of this paper. Informally, the weight of the torus action on a
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v1

v3 v2

〈k〉 〈i〉

〈j〉

B3 =

{
1,

(
0

xi
g1k

)
,

(
0

yi
g2k

)}

v1

v4

v3 v2

〈k〉

〈i〉

〈k〉

〈j〉

B4 =

1,

 0

xi
g1k
g1k

 ,

 0

yi
g2k
g2k

 ,

 0

0
0

k




v4

v3 v5

v2 v1

〈k〉 〈i〉

〈k〉 〈i〉

〈j〉

B5 =

1,


xi
g1k
g1k
0

0

 ,


yi
g2k
g2k
0

0

 ,


0

0
k
0

0

 ,


0

0
0

0

i




v3

v2 v4

v1 v5

v6

〈k〉 〈i〉

〈k〉 〈i〉

〈j〉 〈j〉

B6 =

1,


g1k
g1k
0
0

xi
xi

 ,


g2k
g2k
0
0

yi
yi

 ,


0

k
0
0

0
0

 ,


0

0

0
i
0
0

 ,


0

0

0
0

0
j




Figure 4. An illustration of the algorithm in the proof of Theorem 4.15.

one-dimensional orbit is the “direction” of the torus flow in that orbit, and is given by a line in the
ti.)

GKM theory was developed without the language of splines, so we rephrase the key result with
our terminology.

Theorem 5.1 (Goresky–Kottwitz–MacPherson [GKM98]). Suppose T is a complex algebraic torus
that acts on the complex projective algebraic variety X satisfying the GKM conditions. Let GX be the
graph with vertex set equal to the set of T -fixed points and containing an edge uv exactly when u, v
are the two T -fixed points in the closure of a one-dimensional T -orbit on X. Furthermore, let αX
be the edge-labeling with αX(uv) equal to the principal ideal generated by the weight at u of the torus
action on the one-dimensional orbit associated to uv. Then we have the following isomorphism, both
as rings and as C[t1, . . . , tn]-modules:

H∗T (X) ∼= RGX ,αX
.

The graph GX is sometimes called the moment graph of X because it is the 1-skeleton of the
moment polytope of X in the case when X is a symplectic manifold with a Hamiltonian T -action.

In fact, the torus-weights for varieties X satisfying our conditions will all be homogeneous lin-
ear forms in the ti. In particular, all edge-labels are principal ideals generated by homogeneous
polynomials. We state this fact precisely for future reference.

Proposition 5.2. All edge-labeled graphs (GX , αX) that arise from GKM constructions have prin-
cipal ideals generated by homogeneous polynomials of degree one.
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The next section describes certain conditions under which restricting the degrees of splines over
polynomial rings is equivalent to considering the same splines over quotient rings. A different quo-
tient construction arises in GKM theory when constructing ordinary cohomology from equivariant
cohomology, to which the next section does not apply.

5.2. Splines with quotient rings as coefficients. We now describe how the quotient map R→
R/I on the coefficient ring affects splines, especially when R is a polynomial ring, when the edge-
labels are principal ideals generated by homogeneous elements, and when the ideal I is generated
by all monomials of a fixed degree. The key point is that in this case, the quotient is equivalent to
restricting degree on the original collection of splines, in a way we make precise. Splines of degree
at most d will arise in the next section as the vector space Srd(∆) of classical splines. The work in
this section endows Srd(∆) with part of the product structure of the ring of splines.

The first proposition describes the general relationship between splines over a ring R and splines
over a quotient R/I and then specifies to the case when R is the ring of polynomials and I is the
ideal generated by all monomials of a specific degree. The underlying strategy is similar to that of
Bowden and the third author [BT15, Theorem 3.7].

Proposition 5.3. Let R be a ring with ideal I. Suppose that (G,α) is an edge-labeled graph over R,
and let (G,α) be the edge-labeled graph over the ring R/I obtained by composing the edge-labeling α
with the usual quotient map R→ R/I. Define a map

π : RG,α → RG,α

by letting the image π(p) be the spline p : V → R/Id+1 that composes p : V → R with the quotient
map R→ R/Id+1. Then π sends the ring of splines RG,α over coefficient ring R to the splines RG,α
over the ring R/I.

Suppose R = C[x1, . . . , xn] and I = Id+1 is the ideal generated by monomials of degree d + 1.
Let k be a nonnegative integer so that for every edge uv ∈ E the edge-label α(uv) is a principal
ideal generated by a homogeneous polynomial of degree k. Let Sd ⊆ RG,α be the subset of splines of
degree at most d. Then π : Sd → RG,α is an isomorphism of complex vector spaces. Furthermore, if
p1, p2 ∈ Sd satisfy p1p2 ∈ Sd then π(p1p2) = π(p1)π(p2).

Proof. The map π is well-defined because it is a composition of well-defined maps.
We choose a unique polynomial lift for each coset in C[x1, . . . , xn]/Id+1 so that if two cosets satisfy

the spline condition over C[x1, . . . , xn]/Id+1 then their polynomial lifts satisfy the spline condition
as polynomials. Given a coset p ∈ C[x1, . . . , xn]/Id+1, define the polynomial p as the sum of all
terms of degree at most d in any polynomial representative of p. Note that p is itself the polynomial
representative of p with fewest terms.

Two polynomials pu and pv satisfy the spline condition on the edge uv over the coefficient ring
C[x1, . . . , xn]/Id+1 exactly if

pu − pv = q(f + g1) + g2

for some q ∈ C[x1, . . . , xn], homogeneous degree-k generator f ∈ α(uv), and g1, g2 ∈ Id+1. Decom-
pose q into its homogeneous parts as q = q0 + q1 + · · · + ql. Then q(f + g1) + g2 decomposes into
homogeneous parts as

(q0 + · · ·+ qd−k) f + (q0 + · · ·+ qd−k)g1 + (qd−k+1 + · · ·+ ql)(f + g1) + g2

Since the left summand is precisely the part of degree at most d, we conclude that

pu − pv = (q0 + · · ·+ qd−k) f

is in α(uv) as desired.
By construction of the lifts, the image π(Sd) is all of RG,α. Furthermore π is injective when

restricted to Sd because the quotient map C[x1, . . . , xn] → C[x1, . . . , xn]/Id+1 is injective when
restricted to polynomials of degree at most d. Finally the map π is multiplicative when defined,



SPLINES ON GRAPHS AND POLYNOMIAL SPLINES ON CYCLES 19

again because the general quotient of rings R→ R/I is a ring homomorphism, as is the product of
quotients R|V | → (R/I)|V |.

We have thus proven that π : Sd → RG,α is an isomorphism of complex vector spaces that preserves
multiplication when the product is defined, as desired. �

Remark 5.4. We need the hypothesis of homogeneous generators for a C-vector space isomorphism
between splines of degree at most d and the generalized splines in the quotient by Id+1. Indeed,
consider the graph in Figure 5. Consider the spline condition over the edge labeled x2−1. When we

t tx2 − 1

Figure 5. Example of an edge-labeled graph for which splines of bounded degree
are not isomorphic to splines over coefficients in the quotient ring.

take coefficients in C[x]/I2, the edge-label becomes −1 and so all vertex-labelings satisfy the spline
condition. However, zero is the only polynomial with degree at most one that is divisible by x2 − 1.
This means that only constant splines are in the image of the map from S1 to RG,α.

The next result follows directly from Proposition 5.3, since generators project to generators under
the quotient map.

Corollary 5.5. Fix a finite integer d ≥ 0, and let Id+1 ⊆ C[x1, . . . , xn] be the ideal generated
by all monomials of degree d + 1. Let (G,α) be an edge-labeled graph satisfying the hypotheses of
Proposition 5.3, and let B be a homogeneous MGS for RG,α. Then the degree sequence of B for the
spline module RG,α is the restriction to the first d+1 terms of the degree sequence of B for the spline
module RG,α.

In practice, we use the previous corollary to relate the degree sequence of RG∆,α
r+1
∆

to the dimen-

sion of the classical space of splines, which we describe next.

5.3. Classical results on splines. Traditional splines are defined as piecewise polynomials on
a particular form of geometric decomposition of a space (triangulation, polyhedral, etc.), usually
restricted to degree at most d and differentiability at least r. For our purposes, it is sufficient to
take ∆ to be a finite n-dimensional simplicial complex embedded in Rn with set of n-dimensional
simplices {σv}. We view ∆ as both a set of simplices and as a subset of Rn, depending on context.

Definition 5.6. Let r and d be nonnegative integers. The space of splines Srd(∆) is the R-vector
space defined by the property that F ∈ Srd(∆) if and only if F : ∆→ R is a function that

• has degree at most d in the sense that each restriction F |σv is a polynomial of degree at
most d, and

• is continuously differentiable of order r as a function defined on a subspace of Rn, namely
F is in Cr.

The splines we consider elsewhere in this paper are a dualization of the classical formulation in
Definition 5.6, as follows.

Definition 5.7. Suppose ∆ is an n-dimensional simplicial complex with n-simplices {σv}.
• The dual graph G∆ is the graph whose vertex set V∆ is indexed by the collection of n-

dimensional simplices σv ∈ ∆ and whose edge set E∆ contains the edge uv whenever the
corresponding n-simplices intersect in an (n− 1)-dimensional simplex σu ∩ σv.

• The dual edge-labeling α∆ is the edge-labeling in which uv is labeled by the principal ideal
α∆(uv) generated by any nonzero affine linear form that vanishes on σu ∩ σv.

• The dual map is a map from splines in Srd(∆) to functions on the vertex set V∆ of G∆. If
F ∈ Srd(∆), then the dual map sends F to the function F ∗ : V∆ → C[x1, . . . , xn] defined by
F ∗(v) = F |σv

for all vertices v.
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Note that G∆ is the classical graph dual to ∆ and that the dual edge-labeling α∆ is the function
that assigns to each edge uv in G∆ the ideal generated by the equation of the line at the intersection
of the triangles corresponding to u and v.

Billera proved that the dual map is actually an isomorphism of vector spaces between classical
splines and splines as defined in Definition 2.2. In other words, the splines used in this paper are a
kind of dualization of classical splines. We describe Billera’s result in Proposition 5.8 below. We do
not give a formal definition of simplex, strongly connected, or link and instead refer the interested
reader to either [Bil88] or any introductory text on polytopes (see, for example, [Zie95]). Recall also
that for principal ideals, a power of an ideal is equal to the ideal generated by that power of the
generator.

Proposition 5.8 (Billera [Bil88, Theorem 2.4]). Suppose ∆ is a strongly-connected n-dimensional
simplicial complex so that the link of each simplex in ∆ is also strongly connected.

Define the (r + 1)th-power of α∆ to be the edge-labeling αr+1
∆ that associates to each edge uv

the ideal (α∆(uv))
r+1

. Consider the module of generalized splines RG∆,α
r+1
∆

with coefficients in the

polynomial ring R = C[x1, . . . , xn].
Then F ∈ Srd(∆) if and only if F ∗ ∈ RG∆,α

r+1
∆

is a spline whose localizations F ∗(v) have degree

at most d for all v ∈ V∆. As vector spaces, this dual map is an isomorphism.

The hypotheses in the first sentence of Proposition 5.8 are satisfied by most decompositions that
arise in applications. For instance, suppose the simplicial complex ∆ is a triangulation of a region in
the plane. In this case, that the link of a vertex is strongly connected means that there are no “pinch
points” in the region; that is, the region’s boundary is a disjoint union of subspaces homotopic to
circles.

Generalized splines are strictly more general than classical splines in various ways: dual graphs to
triangulations must have trivalent interior vertices (or other regularity conditions on most vertices,
in the case of more general simplices); indeed, dual graphs to planar graphs are planar. On the
algebraic side, the ideals that arise as the image of α∆ must be principal (unlike most ideals), and
the underlying ring is a polynomial ring or quotient thereof (unlike most rings).

We now specialize Proposition 5.3 to splines on dual graphs, using Billera’s result from Proposition
5.8 to show the (classical) space of splines Srd(∆) is the space of generalized splines RG∆,(α∆)r+1 over
the quotient ring. Note that this endows Srd(∆) with a product structure.

Corollary 5.9. Assume ∆ satisfies the hypotheses of Proposition 5.8. Suppose that every ideal
α(uv) is a principal ideal generated by a homogeneous element in C[x1, . . . , xn], and let Id+1 be the
ideal in C[x1, . . . , xn] generated by all homogeneous elements of degree d+1. Let RG∆,(α∆)r+1 denote
the dual ring of splines over the quotient ring.

Then F ∈ Srd(∆) if and only if F ∗ ∈ RG∆,(α∆)r+1 , where F ∗ is F ∗ composed with the quotient

map C[x1, . . . , xn] → C[x1, . . . , xn]/Id+1. The map F → F ∗ is a C-vector space isomorphism and
respects multiplication in the following senses:

• If f ∈ C[x1, . . . , xn] and p ∈ Srd(∆) satisfy fp ∈ Srd(∆), then

fp = fp ∈ RG,(α∆)r+1 .

• If p1, p2 ∈ Srd(∆) satisfy p1p2 ∈ Srd(∆), then

p1p2 = p1 p2 ∈ RG,(α∆)r+1 .

Proof. Billera’s original result proved that the dual map F → F ∗ is a well-defined bijection of vector
spaces when RG,αr+1

∆
is considered with underlying ring C[x1, . . . , xn]. Proposition 5.3 composes

with the quotient map and completes the proof. �

Remark 5.10. Note that the edge-labeling of Figure 5 in Remark 5.4 cannot occur in a graph G∆

dual to a standard triangulation ∆ because all edge-labels α∆(uv) have the form (ax + by + c)r+1

for some a, b, c ∈ C. Moreover, we can always homogenize an edge-labeling over a polynomial ring



SPLINES ON GRAPHS AND POLYNOMIAL SPLINES ON CYCLES 21

C[x1, . . . , xn], generally via an additional variable. In other words, Corollary 5.9 applies to all splines
arising in classical (analytic) contexts and in applied mathematics.

The main tool in the final section is the following lemma, which establishes that generators for
finite edge-labeled graphs (G,α) can be assumed to be in a certain kind of general position. More
importantly, the lemma constrains the edge-labeled graphs (G,α) that can arise as the duals to a
simplicial complex. In essence, it says that we may change coordinates to assume that any particular
interior vertex in a simplicial complex is the origin of the plane, and then reinterprets that for the
edge-labeling of the dual graph.

This lemma reinforces the point that generalized splines are more general than splines dual to
simplicial complexes. It is not generally true that every edge-labeling can be modified by an affine
linear operator so that any individual vertex is incident only to ideals generated by polynomials with
nonconstant terms! This is a constraint on the graph inherited from the geometry when its dual
space is embedded in Euclidean space.

Lemma 5.11. Consider the polynomial ring C[x1, . . . , xn]. Suppose that (G,α) is a finite graph for
which each edge-label α(uv) is the principal ideal generated by

(a1,uvx1 + a2,uvx2 + · · ·+ an,uvxn + cuv)
ruv

for some positive integer ruv and constants a1,uv, . . . , an,uv, cuv ∈ C.
For each vertex v0, there is an edge-labeling α′ so that

(1) all edge-labels α′(uv) are generated by polynomials with every coefficient a′i,uv nonzero,
(2) α′ is constructed by composing α with a linear operator that acts as a rotation, and
(3)

RG,α ∼= RG,α′ .

Furthermore, suppose ∆ is any simplicial complex that satisfies the hypotheses of Proposition 5.8,
with dual graph G∆ and dual edge-labeling αr+1

∆ . Then α′ can also be chosen to satisfy

(4) all edge-labels α′(uv0) incident to v0 are generated by homogeneous polynomials, and
(5) α′can be constructed by composing α∆ with the linear operator that translates the vertex v0

to the origin and then performs a rotation of Euclidean space around the origin.

Proof. Let g be an invertible affine linear operator on the C-vector space spanned by x1, x2, . . . , xn,
and let α′ = α ◦ g. The map induced by g on C[x1, . . . , xn] is invertible and thus induces an algebra
isomorphism

RG,α ∼= RG,α′ .

We now choose a particular rotation operator g that satisfies Condition (1) from the claim,
namely that each coefficient a′i,uv in the composition α ◦ g is nonzero. The composition α ◦ g sends
the coefficient ai,uv to the expression

(9) gi1a1,uv + gi2a2,uv + · · ·+ ginan,uv.

This expression is zero if and only if the gij satisfy a particular linear equation, equivalently lie
on a particular hyperplane. The condition that none of the expressions in Equation (9) be zero
is equivalent to asking that the gij avoid a finite set of hyperplanes. In particular, consider the
matrices g representing rotations around the origin. This is a unitary group and so intersects each
hyperplane of Equation (9) in a subspace of codimension one. No finite union of these codimension-
one subspaces can cover the entire space of possible g. This shows we may choose a rotation g so
that no coefficient a′i,uv is zero, which proves the first claim.

Finally, suppose (G∆, α∆) arises as the dual of a simplicial complex ∆ satisfying the hypotheses
of Proposition 5.8. The vertex v0 is a point in Cn. Let g′ be the translation of Cn that moves v0

to the origin, namely that sends the vector bx to bx− v0. Thus g′ induces a change of coordinates
on C[x1, . . . , xn] with respect to which v0 becomes the zero vector, so equations satisfied by v0

must now be satisfied when all xi = 0. In particular if α labels the edge uv0 with the principal



22 PORTIA ANDERSON, JACOB P. MATHERNE, AND JULIANNA TYMOCZKO

t t

t t
t tt

�
�
�
�
�
�
�
��S

S
S
S
S
S
S
SS

S
S
S
S

S
S
S
S�

�
�
�

�
�
�
�

t
t

t t
t t
HHH

HHH��
�

��
�

Figure 6. A pinwheel with its dual graph shown in red.

ideal generated by (a1,uv0x1 + a2,uv0x2 + · · ·+ an,uv0xn + cuv0)ruv0 , then α ◦ g′ labels uv0 with the
ideal generated by (b1,uv0

x1 + b2,uv0
x2 + · · ·+ bn,uv0

xn)ruv0 for some constants bi,uv0
∈ C. In other

words, the edge-labeling α ◦ g′ assigns homogeneous degree-one generators to all edges incident to
v0. Composing with a rotation operator as described previously completes the proof. �

5.4. Applications to splines on planar triangulations. In this final section, we apply earlier
work in this paper to the lower bound formula described in the introduction. The main open
questions about that formula address splines S1

d(∆) on a planar triangulation ∆ for low degrees d.
This is one reason we focused on quadratic edge-labels and low-degree splines in parts of this paper.
Our main application characterizes splines on “pinwheels,” recovering a result of Lai–Schumaker,
and uses that to provide support for the lower bound formula.

Much of this section applies to the special case of an interior cell (or pinwheel triangulation),
which is a triangulation that has a unique interior vertex around which triangles radiate like the
spokes of a wheel. This is shown in Figure 6 together with its dual graph, which is simply a cycle.

Theorem 5.12. Let ∆ be the triangulation of an interior cell, namely a pinwheel with n triangles,
and let Id+1 ⊆ C[x, y] be the ideal generated by all monomials of degree d+1. Then the map F → F ∗

is an isomorphism of complex vector spaces between the splines Srd(∆) and the generalized splines
RCn,α, where Cn is an n-cycle and α is an edge-labeling so that every ideal α(uv) is principal and
generated by (x + auvy)r+1 for a nonzero auv ∈ C∗. Moreover, for each auv there is at most one
other edge u′v′ with au′v′ = auv, and that edge cannot immediately follow or precede uv.

Proof. Proposition 5.8 applies to the pinwheel triangulation with n triangles, so Srd(∆) is isomorphic
to the generalized splines on the graph dual to ∆ with edge-labeling given by the (r+1)th power of the
equations of the lines through the central vertex in ∆. The graph dual to a pinwheel triangulation
with n triangles is a cycle on n vertices. By Lemma 5.11, we may identify the central vertex of
the triangulation with the origin and assume each edge uv is labeled by (x + auvy)r+1 for nonzero
coefficients auv. Finally, at most two rays through a given point lie on the same line, so no more
than two of the edge-labels can coincide; if two successive rays going clockwise around the central
vertex are the same, then the triangle they describe has more than 180◦ as its interior angle-sum,
which is impossible. This proves the claim. �

We will use the previous theorem to reinterpret the main results of earlier sections. The key
observation is the following, which characterizes cycles that can be realized as the dual of a trian-
gulation.

Lemma 5.13. All edge-labeled cycles (C,α) that are geometrically realizable as the dual of a triangu-
lation must have at least three edge-labels unless the cycle is a four-cycle with two distinct edge-labels
that alternate around the cycle.

Proof. A cycle is dual to a triangulation only if that triangulation is an interior cell (namely pinwheel
triangulation). Suppose (C,α) is dual to a triangulation. Theorem 5.12 implies that if C has three
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edges, then they are all labeled distinctly; if C has at least five edges, then at least three successive
edges must be labeled distinctly. The only four-cycles with fewer than three distinct edge-labels are
precisely those dual to pinwheel triangulations formed by the intersection of two lines. This gives
an edge-labeled four-cycle that alternates between two distinct edge-labels as one moves around the
cycle. �

Classically, interior vertices formed by the intersection of two lines play a special role in the theory
of splines on triangulations. We give this terminology in the context of generalized splines on the
dual graph.

Definition 5.14. The interior vertices of the triangulations corresponding to 2-label 4-cycles are
called singular vertices.

Lemma 5.13 thus shows that singular vertices are special insofar as they correspond to the only
geometrically realizable edge-labeled cycles with at most two distinct edge labels.

Combining these results with those from earlier sections gives an explicit algorithm for construct-
ing a minimal generating set for splines on interior cells. The first consequence is a classical result
for general r and d [LS07, Theorems 9.3 and 9.12].

Corollary 5.15. Denote the number of monomials of degree at most d by md, namely

md = 1 + · · ·+ (d+ 1) =
(d+ 1)(d+ 2)

2
.

The dimension of the classical spline space S1
d(∆) of splines on a triangulation ∆ corresponding to

a pinwheel triangulation (or interior cell) with n triangles has two formulas.
If the pinwheel has four triangles and a singular vertex, then the dimension of S1

d(∆) is
md if d ≤ 1,

md + 2md−2 if 2 ≤ d ≤ 3,

md + 2md−2 +md−4 if d ≥ 4.

If the pinwheel has n ≥ 3 triangles and no singular vertex, then the dimension of S1
d(∆) is

md if d ≤ 1,

md + (n− 3)md−2 if d = 2,

md + (n− 3)md−2 + 2md−3 if d ≥ 3.

Proof. Lemma 5.13 asserts that the pinwheel with four triangles and a singular vertex is the only
geometrically-realizable cycle with just two distinct labels. Theorem 3.2 constructed an upper-
triangular basis for the module of splines over the polynomial ring in the two-label case. Each
module generator of degree j contributes md−j elements to the vector space basis in degree at most
d, since each module generator can be multiplied by each of the md−j monomials of degree at most
d− j.

If ∆ is not the pinwheel with a singular vertex, Theorem 5.12 showed that ∆ must have at least
three successive distinct labels. Lemma 4.14 gave a homogeneous basis for the spline space as a
module over the polynomial ring in this case. Thus each module generator of degree j contributes
md−j elements to the vector space basis in degree at most d. This proves the claim. �

These results also allow us to contextualize the lower bound conjecture described in the intro-
duction. In particular, we can bound the dimension of S1

d(∆) by building the triangulation ∆ one
interior vertex at a time, and by using Corollary 5.15 to bound the contribution of each interior
vertex.

Corollary 5.16. Suppose ∆ and ∆′ are triangulations of a region in the plane satisfying the hy-
potheses of Proposition 5.8 and that ∆′ is obtained by adding a new interior cell to ∆ with k triangles
radiating around the new interior vertex.
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Then the complex vector space S1
d(∆′) may have more basis elements than S1

d(∆). The number
of additional (vector space) basis elements is at most

dim
(
S1
d(∆0)

)
−md

where ∆0 is the pinwheel triangulation with k triangles and md is the number of monomials of degree
at most d.

Proof. The preimage of the restriction map RG∆′ ,α∆′ → RG∆,α∆
consists of the nonconstant splines

in RG∆0 ,α
. The dimension of nonconstant splines is an upper bound on the total dimension of

RG∆′ ,α∆′ since the restriction might not be surjective. This dimension was given in Corollary 5.15,
proving the claim. �

The condition that the link of a vertex is strongly connected in fact implies that any triangulation
satisfying the constraints of Proposition 5.8 can be built one interior vertex at a time. We sketch the
argument here. Since the link of each vertex is strongly connected, the link of each interior vertex
is a cycle. If ∆′ has an interior vertex, then there is an interior vertex lying on a triangle with a
boundary edge. Removing this vertex and the triangles on which it lies leaves a triangulation ∆. If
∆ is connected, then it still satisfies the conditions of Proposition 5.8. For some choice of vertex ∆
is connected, because ∆′ is strongly connected.
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