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Abstract. In 2022, Huh–Matherne–Mészáros–St. Dizier showed that normalized Schur polynomi-
als are Lorentzian, thereby yielding their continuous (resp. discrete) log-concavity on the positive
orthant (resp. on their support, in type-A root directions). A reinterpretation of this result is that
the characters of finite-dimensional simple representations of sln+1(C) are denormalized Lorentzian.
In the same paper, these authors also showed that shifted characters of Verma modules over sln+1(C)
are denormalized Lorentzian.

In this work we extend these results to a larger family of modules that subsumes both of the
above: we show that shifted characters of all parabolic Verma modules over sln+1(C) are denormal-
ized Lorentzian. The proof involves certain graphs on [n + 1]; more strongly, we explain why the
character (i.e., generating function) of the Kostant partition function of any loopless multigraph
on [n + 1] is Lorentzian after shifting and normalizing. In contrast, we show that a larger uni-
versal family of highest weight modules, the higher order Verma modules, do not have discretely
log-concave characters. Finally, we extend all of these results to parabolic (i.e. “first order”) and
higher order Verma modules over the semisimple Lie algebras ⊕T

t=1slnt+1(C).

1. Introduction and main results

This paper adds to the classical and recent works that study symmetric functions (in finitely
many variables) from an analysis perspective, specifically, their behavior when the variables are
evaluated on the positive orthant. This includes the 2011 paper of Cuttler–Greene–Skandera [12]
(which includes a literature survey with links to numerous classical works, by Maclaurin, Newton,
Muirhead, Schur, Gantmacher, and others), as well as subsequent works by Sra [36], McSwiggen–
Novak [30], one of us with Tao [26], and by the other two of us with Huh and Mészáros [22]. In
particular, this last work contained the following two results [22, Theorem 3 and Proposition 11]:

(1) Normalized Schur polynomials are Lorentzian (see (1.1) below for the definition of “nor-
malized”). This implies their “continuous” log-concavity on the positive orthant, as well
as the discrete log-concavity of their coefficients (the Kostka numbers) along type-A root
directions – i.e. for sln+1(C).

(2) The Kostant partition function, i.e. the character of any Verma module (which encodes
its weight multiplicities) over sln+1(C), is also discretely log-concave along type-A root
directions.

Note that Schur polynomials are the characters of finite-dimensional simple modules over sln+1(C).
It is natural to ask if there is a class of representations which subsumes (or interpolates between)
these modules and Vermas, and such that the above log-concavity results (both continuous and
discrete) can be proved for all modules in this larger class.

The goal of this paper is to provide an affirmative answer to these questions, via parabolic Verma
modules M(λ, J). These are indexed by a highest weight λ and a subset J of simple roots/simple
reflections – equivalently, by λ and a parabolic subgroup WJ of the Weyl group W = Sn+1 of
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sln+1(C). (See Section 2 for notation and details on parabolic Verma modules.) We formalize this
via our first main result, Theorem 1.5 below. First, we set some notation for the entire paper.

Definition 1.1. Throughout, N denotes the nonnegative integers, and [n + 1] := {1, . . . , n + 1}
for n ∈ N. By a monomial in x = (x1, . . . , xm) we mean xµ :=

∏m
j=1 x

µj

j , where all µj ∈ Z. For

µ ∈ Nm define µ! :=
∏m

j=1 µj !; now define the normalization operator on the space of Laurent

series/generating functions over a field F of characteristic zero, via restriction to the monomials of
nonnegative degree in each variable:

N

∑
µ∈Zm

cµx
µ

 :=
∑
µ∈Nm

cµ
xµ

µ!
. (1.1)

Finally, we write ε1, . . . , εn+1 for the coordinate basis of Fn+1 (or Zn+1) for n ∈ N.

We next recall the two notions of log-concavity that are discussed in this work.

Definition 1.2. A polynomial h(x) =
∑

µ∈Nm cµx
µ in the variables x1, . . . , xm is continuously log-

concave if either h ≡ 0 or h > 0 on the positive orthant Rm
>0 and log(h) is concave here. If h is

homogeneous, it is said to be discretely log-concave, or to have discretely log-concave coefficients
(in type-A root directions), if

c2µ ⩾ cµ+εi−εjcµ−εi+εj for every µ ∈ Nm and i, j ∈ [m].

(Log-)Concavity is a well-studied notion, while its discrete univariate version has also been
investigated since Newton’s inequalities and total positivity. The multivariate version is less studied;
see Section 4.4 for some recent positive (and two novel negative) results.

1.1. Lorentzian polynomials. Lorentzian polynomials, introduced in the groundbreaking work
of Brändén and Huh [8] (and independently in [3–5] under the name completely log-concave poly-
nomials), provide a powerful unifying framework connecting discrete and continuous log-concavity.
Lorentzian polynomials have since seen myriad applications across mathematics [4, 6, 8–10, 17, 21,
22,29,32,34].

Definition 1.3 ([8, pp. 822–823]). A homogeneous polynomial h ∈ R[x1, . . . , xm] of degree d is
called Lorentzian if the following conditions hold:

(1) The coefficients of h are nonnegative;
(2) The support of h is M-convex.1

(3) For any i1, . . . , id−2 ∈ [m], the quadratic form ∂
∂xi1

∂
∂xi2
· · · ∂

∂xid−2
h has at most one positive

eigenvalue.

We say h is denormalized Lorentzian if N(h) (see (1.1)) is Lorentzian.

We now collect together the key properties of Lorentzian polynomials that are used below.

Theorem 1.4. Suppose h(x) =
∑

µ∈Nm cµx
µ is denormalized Lorentzian and nonzero. Then:

(1) [8, Theorem 2.30] N(h) is continuously log-concave.2

(2) [8, Proposition 4.4] h is discretely log-concave.
(3) [8, Corollary 3.8] If moreover g(x) is also denormalized Lorentzian, then so is gh.

1A subset J of Nm is M-convex if for α ̸= β ∈ J and any i ∈ [m] with αi > βi, there is an index j with αj < βj

and α− εi + εj ∈ J .
2In fact, the continuous log-concavity of all derivatives of N(h) was introduced by Gurvits [20] under the name

strong log-concavity, and in loc. cit. Brändén–Huh showed that this is equivalent to the Lorentzianity of N(h).
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1.2. Main results.

Theorem 1.5. For any integer n > 0 and parabolic Verma module M(λ, J) over sln+1(C), and
all δ ∈ Nn+1, the normalization N(xδ · charM(λ, J)) is Lorentzian. Consequently, one has both a
continuous and discrete version of log-concavity:

(1) N(xδ · charM(λ, J)) is either identically zero or log-concave as a function on the positive
orthant Rn+1

>0 , and
(2) if µ(ij) := µ+ εi − εj for i, j ∈ [n+ 1], then

(dimM(λ, J)µ)
2 ⩾ dimM(λ, J)µ(ij) · dimM(λ, J)µ(ji), ∀µ ∈ h∗, i, j ∈ [n+ 1]. (1.2)

This result specializes to [22, Theorems 1–3] for finite-dimensional simple modules/Schur poly-
nomials, by setting J = I and δ = 0. Similarly, one recovers [22, Propositions 11, 13] for Verma
modules/the (usual) Kostant partition function, by setting J = ∅.

Here is a second theme that emerged during the course of proving Theorem 1.5: we were naturally
led to exploring connections between parabolic Verma characters, the associated restricted Kostant
partition functions, and the theory of flow polytopes. In the flow polytope language, the novel
ingredient in the proof of (1.2) involves working with flow polytopes of directed simple graphs with
vertex set [n + 1] whose omitted edges comprise an order-ideal in the root poset. The following
result shows more strongly that the restricted Kostant partition function for an arbitrary set of
edges is discretely log-concave – and continuously so as well.

Theorem 1.6. Let G be any loopless directed finite multigraph on [n+1] with edges directed i→ j
for i < j. Then for any v ∈ Zn+1 and i, j ∈ [n+ 1],

KG(v)
2 ⩾ KG(v + εi − εj)KG(v + εj − εi),

where KG(·) denotes the restricted Kostant partition function of G (see Definition 3.1). More
strongly, if chG denotes the generating function of KG, then N(xδ · chG(x)) is Lorentzian for all
δ ∈ Nn+1.

Note the discrete log-concavity assertion of Theorem 1.6 is also proved in [32, Corollary 5.2]
using Lorentzian projections of the integer-point transforms of flow polytopes.

Our next result shows that the (discrete) log-concavity of parabolic Verma modules M(λ, J) is
a “tight” improvement over the results in [22] for Vermas and finite-dimensional simples, from the
viewpoint of representation theory. The family of parabolic Verma modules was shown in recent
work [27] to be a part of the higher order Verma modules, which enjoy similar universal properties
to M(λ, J). In this language, usual Verma modules are of zeroth order, while parabolic Vermas are
of first order – and by Theorem 1.5, all of their characters are log-concave.

Theorem 1.7. Let m ⩾ 2 and consider any mth order Verma sln+1(C)-module V that lacks
singleton holes. Then charV is not (discretely) log-concave.

Thus, parabolic Verma modules are the “best possible” among these universal highest weight
modules as far as log-concavity of their character goes.

Our final result extends the results above – and hence some of the results in [22] – from (parabolic)
Verma modules over sln+1(C) to those over a larger family of complex semisimple Lie algebras:

Theorem 1.8. Let n1, . . . , nT be positive integers, and let g = ⊕T
t=1slnt+1(C) with positive roots ∆.

Then for all δ ∈ Nd, where d =
∑T

t=1(nt+1), the normalized shifted character N(xδ · charM(λ, J))
of every parabolic Verma g-module is Lorentzian – and in particular, continuously and discretely
(along all root directions in ∆) log-concave, as in Theorem 1.5.

However, note that discrete log-concavity does not always hold for higher order Verma modules
– see Theorem 6.1 for a precise formulation.
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Organization. In Section 2, we introduce parabolic Verma modules and provide background re-
sults for them. In Section 3, we explain how parabolic Vermas connect to restricted Kostant
partition functions, and then show Theorems 1.5 and 1.6. Next, in Section 4 we recall the Lidskii
volume formula and the Alexandrov–Fenchel inequality, and use them to give an alternative proof
of the discrete log-concavity in Theorem 1.6 – but not in Theorem 1.5, since discrete log-concavity
fails to be preserved under products (we provide counterexamples). We then discuss higher order
Verma modules over sln+1(C) and show Theorem 1.7 in Section 5. Finally, in Section 6 we work
over a direct sum of sln’s and show Theorem 1.8 (or its more precise formulation in Theorem 6.1).

2. Background on parabolic Verma modules

As the above account suggests, the results and proofs in this work involve tools and ideas from
several different subfields: (a) representation theory of Lie algebras; (b) flow polytopes and vector
partition functions (from algebraic combinatorics); and (c) log-concave/Lorentzian polynomials (in
combinatorics/analysis). Thus, a secondary goal of this work is to provide brief introductions to
these topics, as well as relatively detailed proofs, in the interest of making this work as self-contained
as possible for the readers from various backgrounds/communities who might not be well-versed
with a subset of these topics. The familiar reader should feel free to skim through (or even skip)
these accounts, while taking with them the notation that is set below.

2.1. Notation for semisimple Lie algebras. This subsection and the next two discuss semisim-
ple Lie algebras – e.g. sln+1(C) – and parabolic Verma modules over them. This includes explaining
why these are the “natural” class of modules that unify/subsume both Verma modules and finite-
dimensional simple modules. See [23] for a more detailed account of these topics.

Let g be any complex semisimple Lie algebra (for our results, we work with g = sln+1(C) with
n > 0). Let h denote the Cartan subalgebra (correspondingly for us, the space of traceless diagonal
matrices), and fix a base of simple roots {αi : i ∈ I} in h∗ (for us, I = [n] and the simple root
αi := εi − εi+1 sends a diagonal matrix h to the difference hii − hi+1,i+1 of diagonal entries, for
i ∈ I). Then g is generated as a Lie algebra by Chevalley generators:

• the simple raising operators ei, i ∈ I (for us, the elementary matrices Ei,i+1),
• the simple lowering operators fi, i ∈ I (for us, the elementary matrices Ei+1,i),
• and their commutators hi = [ei, fi] ∈ h (for us, the diagonal matrices Eii − Ei+1,i+1). The
elements hi, i ∈ I form a basis of h, and correspondingly, the simple roots {αi : i ∈ I} form
a basis of h∗.

The simple root vectors ei and fi generate “opposite” nilpotent Lie subalgebras of g, denoted by n+

and n− respectively. (In our case, these are the strictly upper and strictly lower triangular matrices,
generated by {ei, fi : i ∈ [n]} via the commutator bracket [X,Y ] := XY − Y X.) Moreover, each ei
is a simultaneous eigenvector for the adjoint action of all of h. For instance in sln+1(C), we have

[h, ei] = [diag(hjj)j , Ei,i+1] = (hii − hi+1,i+1)Ei,i+1 = αi(h)ei, ∀h ∈ h.

In addition, for any i ̸= j ∈ [n + 1] we have [h,Eij ] = (εi − εj)(h)Eij . These nonzero functionals
εi−εj , i ̸= j are called the roots, and they are nonnegative/nonpositive integer linear combinations
of the simple roots αi; e.g. if i < j then εi − εj = αi + αi+1 + · · ·+ αj−1. Thus, n

± are direct sums
of one-dimensional root spaces CEij with pairwise distinct roots (this holds for all semisimple g).
We also write ∆ = {εi − εj : i < j ∈ [n+ 1]} for the positive roots of g – note, this differs from the
Lie theory convention where ∆ denotes all roots.

2.2. Verma and finite-dimensional modules. Denote the universal enveloping algebra of g by

Ug := T (g)/⟨x⊗ y − y ⊗ x− [x, y] : x, y ∈ g⟩.
Recall, this is a unital associative C-algebra and g ↪→ Ug. Moreover, the multiplication map
mult : Un− ⊗ Uh⊗ Un+ → Ug is a C-vector space isomorphism.
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Representations of g are precisely (left) Ug-modules. An important class of these consists of the
Verma modules M(λ) for all weights λ ∈ h∗, defined via

M(λ) :=
Ug

Ug · n+ +
∑

i∈I (Ug · (hi − λ(hi)))
.

Thus from above, M(λ) ∼= Un− as free rank-one Un−-modules, independent of λ ∈ h∗. Moreover,
the image of 1 in Ug, denoted by mλ, is a weight vector (simultaneous eigenvector) for the action
of h via h ·mλ = λ(h)mλ. Thus the h-weight of e.g. f r

i mλ is λ− rαi, for i ∈ I and r ∈ N.
This brings us to the character of a Verma module. Fix an enumeration of the positive roots, say

β1, . . . , βk; this yields an ordered basis (fβ1 , . . . , fβk
) of n−. Now by the above and the Poincaré–

Birkhoff–Witt (PBW) theorem, the words

fmβ := fm1
β1
· · · fmk

βk
, m1, . . . ,mk ∈ N

form a C-basis of Un−. These words also satisfy [h, fmβ ] = −
∑k

r=1mrβr(h)f
m
β for all h ∈ h; i.e., fmβ

has h-weight −
∑k

r=1mrβr. Similar to above, the h-weight of fmβ mλ equals λ−
∑k

r=1mrβr. Thus

via the isomorphism M(λ) ∼= U(n−), each weight space multiplicity

dimM(λ)µ = dimU(n−)µ−λ =: K(λ− µ)

equals the number of ways in which to write λ − µ as a sum of positive roots. (See e.g. Table 5.1
below for some explicit computations.) This map K is the (usual) Kostant partition function. Thus
we come to the character of M(λ) as the eλ-shift of the generating function of K:

charM(λ) =
∑
β∈h∗

K(β)eλ−β =
eλ

k∏
r=1

(
1− e−βr

) , λ ∈ h∗. (2.1)

Having discussed (notation for) Verma modules, we turn to another important class of g-
representations: the finite-dimensional modules. By Weyl’s theorem, each of these is a direct
sum of simple modules, so it suffices to understand the latter. Recall that a weight λ ∈ h∗ is said
to be integral if λ(hi) ∈ Z for all i ∈ I; these form a lattice that is denoted in [23] and in [22] by Λ.
Within it are the dominant integral weights Λ+ := {λ ∈ Λ : λ(hi) ⩾ 0 ∀i ∈ I}.

Now the “theorem of the highest weight” says that simple finite-dimensional g-modules are – up
to isomorphism – in bijection with dominant integral weights. More precisely, this bijection sends
λ ∈ Λ+ to the quotient module

V (λ) := M(λ)/
∑
i∈I

Ug · fλ(hi)+1
i mλ,

and this is finite-dimensional and simple. Moreover, the celebrated Weyl character formula says
this module has character given by the Schur polynomial sλ, and in the above notation it equals

charV (λ) =
∑
w∈W

(−1)ℓ(w) ew(λ+ρ)−ρ

k∏
r=1

(1− e−βr)

=
∑
w∈W

(−1)ℓ(w) charM(w • λ), λ ∈ Λ+. (2.2)

Here, ρ = 1
2

∑k
r=1 βr is the half-sum of the positive roots, w • λ := w(λ + ρ) − ρ, and W is the

Weyl group, which is the finite group of orthogonal transformations of h∗ generated by the simple
reflections sαi – with associated length function ℓ. (For sln+1(C), W is the symmetric group Sn+1,
generated by the simple transpositions (i i+ 1) for 1 ⩽ i ⩽ n.)
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2.3. Parabolic Verma modules. Finally, we introduce the parabolic Verma modules, which are
a natural family of universal highest weight modules that interpolate between the Verma modules
M(λ) for all λ ∈ h∗ and the simple modules V (λ) for λ ∈ Λ+. The key fact used here is that if λ ∈ h∗

and i ∈ I are such that λ(hi) ∈ N, then inside the Verma module M(λ), the vector f
λ(hi)+1
i mλ is a

highest weight vector – that is, it is killed by all of n+ and has h-weight si • λ := λ− (λ(hi) + 1)αi.

In particular, Ug · fλ(hi)+1
i mλ

∼= M(si • λ).
Given a subset J ⊆ I of (indices of) simple roots, define the J-dominant integral weights to be

Λ+
J := {λ ∈ h∗ : λ(hi) ∈ N ∀i ∈ J}, (2.3)

and for each λ ∈ Λ+
J define the parabolic Verma module

M(λ, J) := M(λ)/
∑
i∈J

Ug · fλ(hi)+1
i mλ. (2.4)

Two “extremal” special cases of these modules come from the two extremal values for J :

• If J = ∅, then Λ+
J = h∗ and M(λ, J) = M(λ).

• If J = I, then Λ+
J = Λ+ and M(λ, J) = V (λ).

Thus, parabolic Verma modules subsume both Verma modules and finite-dimensional simple
g-modules. In addition, the Weyl character formula also extends to these modules:

charM(λ, J) =
∑

w∈WJ

(−1)ℓ(w) ew•λ

k∏
r=1

(1− e−βr)

=
∑

w∈WJ

(−1)ℓ(w) charM(w • λ), J ⊆ I, λ ∈ Λ+
J .

(Here WJ is the parabolic Weyl subgroup, generated by the simple reflections {sαi : i ∈ J}.) But
even more is true: the Weyl character formula (2.2) is the combinatorial shadow – via taking the
Euler characteristic – of the BGG resolution of V (λ):

0 −→
⊕

w∈W :ℓ(w)=k

M(w • λ) −→ · · · −→
⊕

w∈W :ℓ(w)=1

M(w • λ) −→M(λ) −→ V (λ) −→ 0.

(Trivially, the same 1-step resolution holds for every Verma module.) In fact such a resolution
turns out to exist even more generally – for all parabolic Verma modules; see [23] for details.

Given these multiple ways in which parabolic Verma modules have the same fundamental prop-
erties as Vermas and finite-dimensional simples, it is natural to ask if their characters are always
log-concave, since it is so for M(λ), λ ∈ h∗ and V (λ), λ ∈ Λ+ [22]. The motivating goal of this
work is to answer this question affirmatively.

3. Lorentzianity of normalized shifted characters of parabolic Vermas

In this section we show Theorems 1.5 and 1.6. We first provide the unfamiliar reader with a
pathway to go from parabolic Vermas to Kostant partition functions.

3.1. From parabolic Verma modules to restricted Kostant partition functions. An appro-
priate notion to study characters of parabolic Verma modules is that of restricted Kostant partition
functions (KPFs). This extends (2.1) which rewrote all Verma module characters as shifts of the
generating function of the (usual) Kostant partition function. Thus, we first explain how restricted
KPFs naturally encode parabolic Verma characters. As above, readers familiar with some but not
all of the material can skip the relevant subsections, only glancing at them for the notation used
later.

The first step in showing the discrete log-concavity (1.2) of all charM(λ, J) is to note that
every parabolic Verma module is obtained via parabolic induction from a finite-dimensional simple



LOG-CONCAVITY OF PARABOLIC VERMA CHARACTERS AND RESTRICTED KOSTANT PARTITIONS 7

module over a semisimple Lie subalgebra. Namely, define gJ to be the Lie subalgebra of g generated
by the Chevalley generators {ei, fi : i ∈ J}. Then define the parabolic Lie subalgebra

pJ := gJ + h+ n+.

Notice that if λ ∈ Λ+
J , then λ(hi) ∈ N for all i ∈ J ; thus one forms the finite-dimensional gJ -module

VJ(λ), generated by a highest weight vector vλ. This in fact has a p+J -module structure via

h · vλ = λ(h)vλ ∀h ∈ h; n+ · vλ = 0.

Now it is known that the parabolic Verma module is the induction of this gJ -integrable module:

M(λ, J) ∼= IndUg
UpJ

VJ(λ).

As above, let ∆ denote the positive roots of g, i.e. the roots of n+; and let ∆J denote the
(positive) roots of n+J – these are also the roots of n+ that are N-linear combinations of {αi : i ∈ J}.
Now define

u−J :=
⊕

β∈∆\∆J

n−−β; (3.1)

this is a Lie subalgebra of g (in fact of n−), spanned by all root spaces g−β = n−−β such that β is

an N-linear combination of simple roots αi with at least one i ̸∈ J . For example, in our case of
g = sln+1(C),

u−J = spanC{Eij : i > j, {i− 1, . . . , j + 1, j} ⊈ J}.
The PBW theorem gives a vector space isomorphism:

M(λ, J) ∼=C U(u−J )⊗C VJ(λ), (3.2)

and since characters are multiplicative across tensor products, this yields

charM(λ, J) = charU(u−J ) · charVJ(λ).

The second step is to note that the latter factor is indeed log-concave along type-A root direc-
tions. Indeed, partition the Dynkin subdiagram J ⊆ I = [n] into disjoint connected components
J = J1 ⊔ · · · ⊔ Jl; thus each Jr is a contiguous subinterval, and so gJr

∼= sl|Jr|+1(C) for all r. The
following decompositions into pairwise commuting summands/factors are now standard:

gJ = ⊕l
r=1gJr , U(gJ) =

l⊗
r=1

U(gJr),

and the respective Cartan subalgebras satisfy the same relations. Thus λ = ⊕l
r=1λ|hr = (λ1, . . . , λl),

say. Then we also have vector space isomorphisms, across which char(·) is multiplicative:

MgJ (λ)
∼=C

l⊗
r=1

MgJr (λr), VJ(λ) ∼=C

l⊗
r=1

VJr(λr); (3.3)

moreover, the characters of the tensor factors in the second isomorphism are polynomials in disjoint
sets of variables, as is explained below.

The third step in this part is to compute charU(u−J ). We claim more strongly that it is given

by a restricted Kostant partition function for all J ⊊ I. (Note that u−I = 0, so U(u−I ) = C.) To
show the claim, fix J ⊊ I and enumerate ∆ \∆J = {β1, . . . , βp}. By (3.1) and the PBW theorem,

charU(u−J ) =
1∏p

r=1(1− e−βr)
. (3.4)

In other words, dimU(u−J )µ is the number of ways to write −µ as an N-linear combination of
β1, . . . , βp. This is precisely a restricted Kostant partition function (KPF), as we now define.
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Definition 3.1. Let G be a loopless multigraph on the vertices [n + 1] with edges directed from
smaller to larger vertices. Denote by KG the restricted Kostant partition function (KPF), which
takes a vector v = (v1, . . . , vn, vn+1) ∈ Zn+1 to the number KG(v) of ways to write v as a sum of
the positive type-A roots εi − εj ∈ Zn+1 corresponding to edges (i, j) in G (with multiplicity). For
instance if G is the complete (directed simple) graph, we get the usual/unrestricted KPF K(v).

Now the claim is shown as follows. Let µ = −
∑n

i=1 liαi ∈ h∗ for some li ∈ C. Then the space
U(u−J )µ = 0 unless all li ∈ N. More strongly, if we define the graph GJ on [n+1] by only including
those edges i → j for which i < j and {i, i + 1, . . . , j − 1} ⊈ J , then the discussion around (3.4)
implies that (a) there are exactly p such edges (and no multi-edges) in GJ , say ir → jr for r ∈ [p];
(b) up to relabelling, βr = εir − εjr for all r; and (c) we have that

−µ =
n∑

i=1

liαi = l1ε1 + (l2 − l1)ε2 + · · ·+ (ln − ln−1)εn − lnεn+1

=⇒ dimU(u−J )µ = KGJ
(l1, l2 − l1, . . . , ln − ln−1,−ln).

3.2. Completing the proof. We now prove Theorems 1.5 and 1.6; we follow the approach in
[22, Proposition 13]. Recall the normalization operator in (1.1); and given a tuple β ∈ Nm, let ∂β

denote the βth partial derivative of polynomials or power series p(x) ∈ R[[x1, . . . , xm]], sending a

monomial xµ to µ!
(µ−β)!x

µ−β. Thus if p(x) :=
∑

µ⩾0 cµx
µ, then we have

∂βN(p(x)) =
∑
µ⩾β

cµ
µ!

µ!

(µ− β)!
xµ−β = N(p(x) · x−β). (3.5)

Proof of Theorem 1.6. In [22], to show Lorentzianity the authors worked with characters of Verma
modules over sln+1(C), and then translated this into flow polytopes over the complete simple graph
on [n+ 1]. As we now work with arbitrary multigraphs, we adjust the argument.

Suppose G contains mij ⩾ 0 edges i → j, for each pair i < j in [n + 1]. Then the generating
function of KG(·) is

chG(x1, . . . , xn+1) =
∏
j>i

(1 + xjx
−1
i + x2jx

−2
i + · · · )mij ;

this is well-defined in the power series ring R[[x2
x1
, . . . , xn+1

xn
]].

We now show that the expression N(xδ · chG(x)) is Lorentzian for all δ ∈ Nn+1. Note that only
the terms xµ with µ ⩾ −δ (coordinatewise) contribute to this expression. Now choose any positive
integers nij for i > j such that δi ⩽

∑
j>i nijmij =: βi for all i ∈ [n], and compute

N(xδ · chG(x)) = N

xδ
∏
j>i

(x
nij

j + xix
nij−1
j + · · ·+ x

nij

i )mij · x−β

 . (3.6)

Define the homogeneous polynomial

p(x) := xδ
∏
j>i

(x
nij

j + xix
nij−1
j + · · ·+ x

nij

i )mij .

Since each polynomial factor in this product (without the exponent of mij) as well as xδ has a
Lorentzian normalization, N(p(x)) is Lorentzian by Theorem 1.4 (3). As taking partial derivatives
preserves the Lorentzian property, (3.5) yields that N(xδ · chG(x)) is also Lorentzian, via (3.6),
Again using Theorem 1.4, we obtain both the continuous log-concavity of N(xδ · chG(x)) and the
discrete log-concavity of chG(x). □
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Proof of Theorem 1.5. From (3.2) and (3.3) we know that

charM(λ, J) = charU(u−J )
l∏

r=1

charVJr(λr),

and as discussed above, charU(u−J ) is the generating function of the restricted KPF KGJ
(with GJ

introduced after Definition 3.1). We now follow the proof of Theorem 1.6 (as one cannot directly
apply it). Let GJ contain mij ∈ {0, 1} edges i→ j for i < j in [n+ 1]. Given δ ∈ Nn+1, choose nij

and define βi as in the preceding proof, and compute as in (3.6):

N(xδ · charM(λ, J)) = N

xδ
∏
j>i

(x
nij

j + xix
nij−1
j + · · ·+ x

nij

i )mij ·
l∏

r=1

charVJr(λr) · x−β

 .

The factors in the second product have Lorentzian normalizations by [22, Theorem 3], as do the
factors in the first product as well as xδ. As in the proof of Theorem 1.6, it follows using (3.5)
and Theorem 1.4 (3) that N(xδ · charM(λ, J)) is also Lorentzian. In turn, this yields both the
continuous log-concavity of N(xδ · charM(λ, J)) and the discrete log-concavity of charM(λ, J) by
Theorem 1.4. □

4. Alternative approach to discrete log-concavity, via flow polytopes

We now explain an alternative way of proving the discrete log-concavity in Theorem 1.6: using
flow polytopes. As above, we start with a quick introduction to flow polytopes; the interested
reader may see [31] for a more thorough and general treatment.

4.1. Flow polytopes and Kostant partition functions. By convention, we will use graph to
mean a loopless directed finite multigraph on a labeled vertex set [n+ 1] with edges directed from
i to j when i < j (hence acyclic).

Let G be a graph on vertex set [n+ 1]. For a = (a1, . . . , an) ∈ Rn, an a-flow on G is a function
f : E(G)→ R⩾0 such that the flow conservation condition∑

e=(i′,i)∈E(G)

f(e) + ai =
∑

e=(i,i′)∈E(G)

f(e)

holds for each i ∈ [n]. Note that summing these n equations and simplifying gives∑
e=(i,n+1)∈E(G)

f(e) = −
n∑

i=1

ai.

In other words, flow conservation at i = n+ 1 is implied, when one completes the flow vector a to
include an additional coordinate such that the n+ 1 coordinates sum to zero.

Definition 4.1. For any a ∈ Rn, the flow polytope FG(a) of G is the set of a-flows on G.

We denote by k the number of edges of G (with multiplicity). By fixing an integral equivalence
between the affine span of FG(a) and Rk−n, we may view FG(a) as a full-dimensional polytope in

Rk−n instead of a polytope in RE(G) when convenient.
We now explain the connection between Ehrhart theory of integral flow polytopes and the re-

stricted Kostant partition functions. Given G as above, let AG be the (n + 1) × k matrix with a
column εi− εj for each edge e = (i, j) in G (with multiplicity). A straightforward check shows that
for any completed flow vector ã = (a1, . . . , an,−

∑n
i=1 ai),

FG(a1, . . . , an) =
{
f ∈ Rk

⩾0 : AGf = ãT
}
.

In particular, the number of integer points in FG(a1, . . . , an) is exactly KG (a1, . . . , an,−
∑n

i=1 ai).
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Example 4.2. If G is the complete graph on vertices [n + 1], then k =
(
n+1
2

)
is the number of

type-A positive roots, and the number of integer points in FG(a1, . . . , an) equals the usual Kostant
partition function K(a1, . . . , an,−

∑n
i=1 ai).

Remarkably, volumes of flow polytopes are also given by Kostant partition functions. The follow-
ing formula was proved by Baldoni and Vergne in [7] using residue techniques. It was subsequently
reproved by Postnikov and Stanley in unpublished work [38], and again by Mészáros and Morales
in [31] via an explicit subdivision. We use the notation and formulation of [31] below.

Recall the dominance order (or weak majorization) on Rn is given by: a dominates b if a1+ · · ·+
ai ⩾ b1 + · · ·+ bi for each i ∈ [n].

Theorem 4.3 (Lidskii volume formula [7, Theorem 38]). Let G be a graph on [n+1] with k edges
(directed from smaller to larger vertices). Suppose that each vertex i ∈ [n] has at least one outgoing
edge. Then for any a1, . . . , an ⩾ 0,

Vol(FG(a1, . . . , an)) =
∑
r

(k − n)!KG

(
r1 − oG1 , . . . , rn − oGn , 0

) ar11
r1!
· · · a

rn
n

rn!

where oGi = outdegG(i)−1, and the sum is over weak compositions r = (r1, r2, . . . , rn) of k−n that
are ⩾ oG := (oG1 , . . . , o

G
n ) in dominance order.

From the flow conservation condition, one can observe that whenever a does not dominate the
zero vector G admits no a-flows. In this case, clearly KG(a) = 0. Hence the condition that r
dominates oG above can be dropped from the sum if desired. Also note the additional requirement
above that a1, . . . , an ⩾ 0 for this volume formula, which is not required in the definition of flow
polytopes.

We conclude this foray into flow polytopes with a useful property required later: the flow poly-
topes considered in Theorem 4.3 admit a Minkowski sum decomposition into simpler flow polytopes
(see for instance [31, Proposition 2.1]).

Proposition 4.4. For any graph G on [n+ 1] and any a1, . . . , an ⩾ 0,

FG(a) =
n∑

i=1

aiFG(εi).

4.2. Mixed volumes of polytopes and the Alexandrov–Fenchel inequality. Let P1, . . . , Pn

be polytopes in Rk and fix real weights a1, . . . , an ⩾ 0. Set P to be the Minkowski sum

P = a1P1 + · · ·+ anPn.

By classical results on convex sets (see for instance [16, Theorem 5.2.39]) the volume Vol(P ) of
P is a homogeneous polynomial of degree k in a1, . . . , an:

Vol(P ) =

n∑
s1=1

n∑
s2=1

· · ·
n∑

sk=1

V (Ps1 , . . . , Psk)as1 · · · ask .

The coefficients V (Ps1 , . . . , Psk) are uniquely determined by requiring that they be symmetric
up to permutations of arguments. The number V (Ps1 , . . . , Psk) is called the mixed volume of
Ps1 , . . . , Psk .

We will represent mixed volumes with the notation

V (P r1
1 , . . . , P rn

n ) := V

P1, . . . , P1︸ ︷︷ ︸
r1

, . . . , Pn, . . . , Pn︸ ︷︷ ︸
rn

 .
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Then

Vol(P ) =
∑

r1,...,rn⩾0
r1+···+rn=k

(
k

r1, . . . , rn

)
V (P r1

1 , . . . , P rn
n ) ar11 · · · a

rn
n

=
∑

r1,...,rn⩾0
r1+···+rn=k

k!V (P r1
1 , . . . , P rn

n )
ar11
r1!
· · · a

rn
n

rn!
.

We will derive log-concavity of the characters of parabolic Verma modules from the Alexandrov–
Fenchel inequalities, a fundamental result in convex geometry proved independently by Alexandrov
in [2] and Fenchel in [18,19]. These inequalities state that mixed volumes are discretely log-concave,
and have been used to derive many instances of discrete log-concavity in combinatorics (for a survey,
see [37]).

Theorem 4.5 (Alexandrov–Fenchel inequalities). Fix i, j ∈ [n] with i < j. Then for any integers
r1, . . . , rn ∈ N with ri, rj ⩾ 1,

V (P r1
1 , . . . , P rn

n )2 ⩾ V (P r1
1 , . . . , P ri+1

i , . . . , P
rj−1
j , . . . , P rn

n )V (P r1
1 , . . . , P ri−1

i , . . . , P
rj+1
j , . . . , P rn

n ).

The equality conditions of Theorem 4.5 remain a major open problem, with recent advancements
made in [11,35].

4.3. Discrete log-concavity of restricted Kostant partition functions. We can finally finish
the alternative proof of the first part of Theorem 1.6. We need one last intermediate result. For a
graph G, recall the numbers oGi = outdegG(i) − 1. The following result is an easy consequence of
the Lidskii volume formula.

Proposition 4.6. Let G be a graph on vertices [n+1] with k edges and at least one outgoing edge
from each vertex i ∈ [n]. Then for any weak composition r = (r1, . . . , rn) of k − n,

V (FG(ε1)
r1 , . . . ,FG(εn)

rn) = KG

(
r1 − oG1 , . . . , rn − oGn , 0

)
.

Proof. For each i ∈ [n], set Pi = FG(εi) viewed as a polytope in Rk−n. For any a1, . . . , an ⩾ 0,
Proposition 4.4 implies

Vol(FG(a1, . . . , an)) = Vol(a1P1 + · · ·+ anPn)

=
∑

r1,...,rn⩾0
r1+···+rn=k−n

(k − n)!V (P r1
1 , . . . , P rn

n )
ar11
r1!
· · · a

rn
n

rn!
.

From Theorem 4.3 and the remark thereafter, we obtain

Vol(FG(a1, . . . , an)) =
∑

r1,...,rn⩾0
r1+···+rn=k−n

(k − n)!KG

(
r1 − oG1 , . . . , rn − oGn , 0

) ar11
r1!
· · · a

rn
n

rn!
.

By Zariski density, comparing these two volume formulas yields

V (P r1
1 , . . . , P rn

n ) = KG

(
r1 − oG1 , . . . , rn − oGn , 0

)
. □

With the above analysis at hand, we can now show:

Proof of the discrete log-concavity in Theorem 1.6. Fix any v ∈ Zn+1. First note that if vn+1 ̸=
−(v1 + · · · + vn), then both sides of the inequality are zero and there is nothing to prove. We
assume that v1 + · · · + vn+1 = 0. Choose an integer B > |v1| + · · · + |vn| + |vn+1| + n + 1. Let
ṽ ∈ ZB+1 denote v with B − n trailing zeros appended. Set H to be the graph on [B +1] obtained
by starting with G and connecting each new vertex i > n + 1 to all smaller vertices. Direct all
edges from smaller to larger vertices as usual.
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Observe that

KH(ṽ) = KG(v),

KH(ṽ + ε̃i − ε̃j) = KG(v + εi − εj), and

KH(ṽ − ε̃i + ε̃j) = KG(v − εi + εj) for all distinct i, j ∈ [n+ 1].

For each b ∈ [B], set Pb = FH(ε̃b) and rb = ṽb + oHb . Note that the choice of B implies oHb ⩾ 1
and rb ⩾ 0 for each b ∈ [B]. Hence the assumptions of Proposition 4.6 are met by H and r, with
its application yielding

V
(
P r1
1 , . . . , P rB

B

)
= KH

(
r1 − oH1 , . . . , rB − oHB , 0

)
= KH (ṽ) = KG (v) .

Applying the Alexandrov–Fenchel inequalities (Theorem 4.5) completes the proof. □

4.4. Flow polytopes for parabolic Verma characters; products of discretely log-concave
polynomials. Given the preceding proof, it is natural to ask if this approach would also help prove
the Discrete Log-Concavity along type-A root directions of charM(λ, J) in Theorem 1.5. (For
convenience, we refer to this property as ADLC throughout this subsection.) Such an alternative
approach was indeed undertaken for the special case of Verma modules in [22].

In order for this approach to work for parabolic Vermas, a key step would require proving that
since the character of each tensor factor in (3.2) satisfies ADLC, hence so does their product.
Stripping away the representation theory, the question becomes:

Is the set of multivariate homogeneous ADLC polynomials with nonnegative coefficients closed
under multiplication?

One can further weaken this question, to assume that

(a) the coefficients are all nonnegative integers;

(b) one of the two polynomials is a geometric series xki + xk−1
i xj + · · · + xkj (hence trivially

ADLC);
(c) the exponents occurring in the other ADLC polynomial form an M-convex set;

and then ask if the two polynomials multiply to an ADLC output.
Unfortunately, this question is far from having a positive answer – whence it is unclear how to

proceed via Alexandrov–Fenchel in proving the discrete log-concavity of parabolic Verma characters.
We provide two families of counterexamples here.

Example 4.7. (This example does not have the weakening (b) above.) June Huh communicated
to us: let p(x, y, z) = x2 + 100y2 + z2 + 10xy + 10yz + 10xz and q(x, y, z) = x + y + z. Then p, q
have M-convex supports and are ADLC, but p · q is not ADLC. One can also use xkq(x, y, z) for
k ⩾ 1 if polynomials of “higher” degree are desired.

These observations extend to the following result.

Proposition 4.8. Fix an integer n ⩾ 2 and a scalar b ⩾ 13/2, and let

p(x0, x1, . . . , xn) := b2x20 +
n∑

i=1

x2i + b
∑

0⩽i<j⩽n

xixj .

Then for every integer k ⩾ 2, and every finite M-convex subset S ⊂ Zn+1
⩾0 with all elements having

ℓ1-norm k and containing the points

(k,0n), (k − 1, 1,0n−1), (k − 1, 0, 1,0n−2), (k − 2, 2,0n−1), (k − 2, 1, 1,0n−2), (k − 2, 0, 2,0n−2),

the polynomial p · qS is not ADLC, even though p, qS are ADLC with M-convex supports. Here, the
homogeneous polynomial qS(x0, . . . , xn) :=

∑
µ∈S xµ.

Proof. The coefficients and exponents of p may be graphically arranged in a multi-dimensional
array – we depict it here for n = 2:
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1 b 1
b b
b2

It is easy to see that this 2-dimensional array is ADLC; similarly, p is ADLC for all n ⩾ 2. Also
verify by inspection that p has M-convex support. Moreover, qS has M-convex support, hence
by [33] has the SNP (saturated Newton polytope) property, meaning that if one considers the
lattice points that are the exponents in its monomials, there are no “internal gaps”. Hence all
arithmetic progressions in S have corresponding coefficients in qS :

. . . , 0, 0; 1, 1, . . . , 1, 1; 0, 0, . . .

and this is clearly log-concave. Thus qS is also ADLC.
However, one can compute the following monomials and their coefficients in p · qS :

xk1x
2
0 7→ b2 + b+ 1; xk1x0x2 7→ 3b+ 1; xk1x

2
2 7→ b+ 2,

and now we compute using that b ⩾ 13/2:

(b+ 2)(b2 + b+ 1)− (3b+ 1)2 = b · b · (b− 6)− 3b+ 1 ⩾ b · 13
2
· 1
2
− 3b+ 1 ⩾

b

4
+ 1 > 0.

Hence p · qS is not ADLC. □

The above example and result motivate one to ask just how strong (or weak) hypotheses are
required to preserve the ADLC or related properties for homogeneous polynomials, with or without
the weakening (b) above. We begin with three classical, interrelated, positive, “univariate” results.
The notion of log-concavity is also known in the theory of total positivity as the TN2 property
(“totally nonnegative of order 2”). Namely, given a real sequence (cn)n∈Z, define the semi-infinite
Toeplitz matrix Tc = (ai,j)i,j⩾0 where aij := ci−j for all i, j. Then c or Tc is said to be TNr

for an integer r ∈ [1,∞] if all finite submatrices of Tc of size at most r × r have nonnegative
determinant. The Cauchy–Binet formula gives that (semi-infinite Toeplitz) TNr matrices are closed
under multiplication.

Now let c be a finite positive sequence with no internal zeros, padded by zeros:

. . . , 0, 0; c0, . . . , ck; 0, 0, . . .

with all ci > 0 – and let d = (d0, . . . , dl) ∈ (0,∞)l+1 be another. One can encode these by
their generating functions/polynomials Ψc(x) := c0 + · · · + ckx

k, and similarly Ψd. Then TcTd

corresponds to the sequence obtained from Ψc(x)Ψd(x), i.e. the convolution product of c,d. Now
we record the aforementioned classical results:

• For r = 1, the TNr property is just nonnegativity. Thus, the Cauchy–Binet formula yields
the (trivial) fact that convolving two positive sequences yields a positive sequence.
• For r = 2, the TNr property is log-concavity. This yields the classical fact (see e.g. [24,
Chapter 8, Theorem 1.2]) that convolving two log-concave sequences with no internal zeros
yields another such.
• For r = ∞, the TNr property is equivalent to the real-rootedness of Ψc(x), by celebrated
1950s results of Edrei [14, 15] and Aissen–Schoenberg–Whitney [1] – and c is then termed
a (finite) Pólya frequency sequence. Translating modulo this result, the convolution fact is
again trivial: the product of two real-rooted polynomials is real-rooted.

The r = 2 fact was “upgraded” in two ways by Brändén–Huh. The first is [8, Corollary 3.8]:
denormalized Lorentzian polynomials p (i.e. N(p) is Lorentzian) are closed under multiplication.
In another direction, the r = 2 fact was first extended by Liggett [28, Theorem 2] to the uni-
variate statement that the convolution of two ultra log-concave sequences with no internal zeros
is another such. In turn, this was extended to the multivariate result [8, Corollary 2.32], which
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moreover answers a question of Gurvits (1990) by showing that the product of strongly log-concave
homogeneous (multivariate) polynomials is strongly log-concave.

Given this multitude of positive results, it is natural to ask if there is a “naive” multivariate gen-
eralization of the r = 2 fact. The multivariate generalization of log-concavity is simply the ADLC
property (after first homogenizing). However, as the following counterexample shows, preservation
of ADLC under products fails even if one polynomial is in 2 variables (or homogenized to 3 vari-
ables) and the other is a univariate polynomial – whose coefficients can even be taken to be (ultra)
log-concave. We write down the result for homogeneous polynomials; the interested reader may
reduce one variable in each by dehomogenizing.

Proposition 4.9. Fix positive real scalars a, b > 0 and define the family

pb,t(x, y, z) := b2 · x2y2 + b · x2yz + x2z2 + b2 · xy2z + b2 · y2z2 + t · xyz2, t > 0.

Then for any t > 2b + a and any homogeneous polynomial q(x, y) = xk + axk−1y + · · · with
nonnegative coefficient on xk−2y2, pb,t is ADLC but pb,tq is not.

Note that pb,t has M-convex support and is ADLC:

1 t b2

b b2

b2

Moreover, one can choose q to have all positive coefficients, even ones forming an ultra log-concave
(hence ADLC) sequence. And yet, pb,tq is not ADLC when t > 2b+ a.

Proof. Let c ⩾ 0 be the coefficient of xk−2y2. Now compute the coefficients of the following
monomials in pb,tq:

xk+2y2 7→ b2; xk+1y2z 7→ b2 + ab; xky2z2 7→ b2 + at+ c.

Therefore pb,tq is not ADLC, since

(b2 + ab)2 − b2(b2 + at+ c) = b2(2ba+ a2 − ta− c) ⩽ b2a(2b+ a− t) < 0. □

5. Log-concavity fails for higher order Verma modules

This section is of a representation-theoretic flavor. In it, we explain how our log-concavity result
is tight in a precise sense coming from representations of Lie algebras. Recall that Verma modules
and parabolic Vermas (e.g. finite-dimensional simple modules) are examples of modules with (a) a
universal highest weight property, and (b) a Weyl-type character formula, arising from (c) a BGG-
type resolution via direct sums of Verma modules. In fact these are part of a bigger family of highest
weight g-modules (not merely over sln+1(C) but over any Kac–Moody Lie algebra) which satisfy (a)
and (proved in some cases) (b) and (c). These modules were uncovered in recent work [27], where
they were termed “higher order Verma modules”.

There is a fourth notable feature of these modules: (d) Parabolic Verma modules not only
have Weyl-type character formulas, but they also yield the weight-sets of all simple highest weight
modules (including the non-integrable ones) – not just in finite type [25] but over all Kac–Moody
Lie algebras [13]. Similarly, higher order Verma modules yield the weight sets of all highest weight
modules, again over arbitrary Kac–Moody g [27]. Thus, they are a natural family to study beyond
parabolic Verma modules; in particular, here we explore the question of log-concavity of their
characters.



LOG-CONCAVITY OF PARABOLIC VERMA CHARACTERS AND RESTRICTED KOSTANT PARTITIONS 15

5.1. Preliminaries on higher order Verma modules. We first introduce the key notion needed
to define higher order Verma modules. A hole is defined [27] to be an independent (i.e. pairwise
orthogonal) set H ⊆ I of simple roots/nodes in the Dynkin diagram of g. Given a hole H ⊆ I and
a highest weight λ ∈ Λ+

H (see (2.3)), the corresponding higher order Verma module is

M(λ, {H}) := M(λ)/Ug ·
∏
i∈H

f
λ(hi)+1
i ·mλ. (5.1)

Note that the denominator is a submodule of M(λ) that is isomorphic to the Verma module
M(
∏

i∈H si • λ); and the fi, i ∈ H pairwise commute, as do the si. Moreover, this quotient module
obviously has a Weyl-type character formula, in fact a 2-step resolution by “usual” Verma modules:

0→M(
∏
i∈H

si • λ)→M(λ)→M(λ, {H})→ 0;

charM(λ, {H}) =
∑

w∈WH

(−1)ℓH(w) charM(w • λ),

where WH = {e, w◦ :=
∏

i∈H si} ∼= Z/2Z and the associated length function is ℓH(e) = 0, ℓH(w◦) =
1.

In general, a higher order Verma module involves quotienting M(λ) by Ug ·
∏

i∈H f
λ(hi)+1
i ·mλ

for multiple holes H. (There can only be finitely many such, since each H ⊆ I.) For example,
if each hole is a singleton {i}, and the set of these is J , then (a) necessarily λ ∈ Λ+

J , and (b) we
obtain precisely the parabolic Verma module M(λ, J) (2.4). More generally, we have:

Definition 5.1. Let H = {H1, . . . ,Hl} be a collection of holes – i.e. each Hj ∈ Indep(I). Given a

weight λ ∈
⋂l

j=1 Λ
+
Hj

, the corresponding higher order Verma module is

M(λ,H) := M(λ)∑l
j=1 Ug ·

∏
i∈Hj

f
λ(hi)+1
i ·mλ

.

We also need the notion of minimal holes. For example if λ = 0 and g = sl6(C), then f1m0 = 0
in M(λ, {1}), which automatically implies fif1m0 = 0 for all i > 2. Thus for example,

M(0, {{1}}) = M(0, {{1}, {1, 3}, {1, 4}, {1, 5}, {1, 3, 5}}).

Thus, henceforth we will always replace H by the subset of “minimal holes” Hmin. Notice that
this consists of irredundant holes H.

Definition 5.2. Given H ⊆ 2I and λ as in Definition 5.1, the module M(λ,H) = M(λ,Hmin) is
said to be an mth order Verma module, where m = maxH∈Hmin |H|.

Thus, parabolic Verma modules are first order:

M(λ, J) = M(λ, {{i} : i ∈ J}),

while by convention we say that the “usual” Verma module M(λ) = M(λ, ∅) is zeroth order (as is
0 = M(λ, {∅})). The module M(λ, {H}) in (5.1) is |H|th order.

Remark 5.3. For there to exist an mth order Verma module over sln+1(C), it is necessary for an
independent subset of size m to exist within the Dynkin diagram on I = [n]. Thus n ⩾ 2m− 1. In
particular, there are no second (or higher) order Verma modules over sl2(C) or sl3(C) – one only
has Vermas and parabolic Vermas.
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5.2. The negative result. We now come to the goal of this section: showing that over sln+1(C),
higher order Verma characters are not log-concave along type-A root directions. We begin by
writing out the simplest example, before proceeding to the general result.

Example 5.4. Let g = sl4(C), and let

λ = 0, V =
M(0)

Ug · f1f3 ·m0
=

M(0)

M(−α1 − α3)
= M(0, {{1, 3}}).

This is a second order Verma module. Let β = α3 and consider the β-root string {−α1−α2−pα3 :
p = 1, 2, 3}. The respective weight spaces of the two Verma modules whose quotient is V are
listed in Table 5.1, via monomials in the ordered PBW basis whose roots are the following ordered
sequence of positive roots in n+:

α1, α2, α3, α1 + α2, α2 + α3, α1 + α2 + α3.

µ Basis of M(0)µ Basis of M(−α1 − α3)µ dimVµ

−α1 − α2 − α3 fα1fα2fα3 , fα3fα1+α2 , fα2 3
fα1fα2+α3 , fα1+α2+α3

−α1 − α2 − 2α3 fα1fα2f
2
α3
, f2

α3
fα1+α2 , fα2fα3 , fα2+α3 2

fα1fα3fα2+α3 , fα3fα1+α2+α3

−α1 − α2 − 3α3 fα1fα2f
3
α3
, f3

α3
fα1+α2 , fα2f

2
α3
, fα3fα2+α3 2

fα1f
2
α3
fα2+α3 , f2

α3
fα1+α2+α3

Table 5.1.

From the table it is clear that (dimVµ)
2 < dimVµ+β dimVµ−β for µ = −α1 − α2 − 2α3 and

β = α3. This violates log-concavity of the character of this second order Verma module V =
M(0, {{1, 3}}). □

Example 5.4 is prototypical of the general situation: the characters of the mth order Verma
modules (5.1) are never log-concave for m ⩾ 2. More strongly, we have the following result.

Theorem 5.5. Fix g = sln+1(C) as usual. Given any set of holes H = {H1, . . . ,Hl}, each of which

has size at least 2, and a weight λ ∈
⋂l

j=1 Λ
+
Hj

, the character of the higher order Verma module

M(λ,H) is not log-concave along at least one type-A simple root direction.

Proof. We first prove the case where H consists of a single (hence minimal) hole: H = {H}, where
|H| = m ⩾ 2. List H = {i1 < · · · < im} ⊂ [n]; the corresponding mth order Verma module (as
in (5.1)) is

M(λ, {H}) := M(λ)/M(λ− l1αi1 − · · · − lmαim), where lr := λ(hir) + 1 ∀r ∈ [m].

Denote by Kλ(·),KH(·) the KPFs of the Verma modules in the numerator and denominator, re-
spectively. We now show that their difference is not log-concave along the αi2-direction; the proof
can be adapted to proceed along the αir direction for any r ∈ [m].

Set β = αi2 and choose µ = −
∑i2−1

i=i1+1 αi − β −
∑m

r=1 lrαir . We will show that log-concavity
fails for the weight multiplicities at λ+ (µ+ β), λ+ µ, λ+ (µ− β).

To show this, first note that any decomposition of µ±β or µ as a sum of negative roots involves
each −αir individually, for r > 2. Thus, we obtain the same multiplicities by replacing µ by

µ′ = −
∑i2−1

i=i1+1 αi − β − l1αi1 − l2αi2 , and H by H ′ = {i1, i2} – i.e., replacing the Verma in the
denominator by M(λ− l1αi1 − l2αi2).
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We now compute the weight space multiplicities of M(λ) at λ+ µ′, λ+ µ′ ± β – in other words,
we (replace λ by 0 and) compute K0(·) at −µ′,−µ′±β. More generally, let p ∈ N be arbitrary and
consider

−(µ′ + β − pβ) =

i2−1∑
i=i1+1

αi + l1αi1 + (l2 + p)αi2 .

Any decomposition of this into a sum of positive roots would – akin to the preceding paragraph –
involve adding (l1−1) terms αi1 and (l2+p−1) terms αi2 individually, to

∑i2
i=i1

αi. Thus K0(−(µ′+

β− pβ)) = K0(
∑i2

i=i1
αi). But decomposing this sum into positive type-A roots corresponding to a

union of contiguous sub-intervals of [i1, i2] involves placing (or not placing) “barriers/separators”

at any permissible positions between consecutive entries in [i1, i2]. Thus K0(
∑i2

i=i1
αi) = 2i2−i1 ,

which implies from above that

K0(−(µ′ + β − pβ)) = 2i2−i1 , ∀p ∈ N.

We next compute

KH′(−(µ′ + β − pβ)) = K0

(
i2−1∑

i=i1+1

αi + pαi2

)
.

Using the same arguments as above, it follows that

KH′(−(µ′ + β)) = 2i2−i1−2, KH′(−(µ′ − pβ)) = 2i2−i1−1 for p ⩾ 0.

Putting together these weight multiplicities,

dimM(λ, {H})λ+(µ+β) = 2i2−i1−2 · 3,
dimM(λ, {H})λ+µ = dimM(λ, {H})λ+(µ−β) = 2i2−i1−2 · 2.

(5.2)

This shows that charM(λ, {H}) is not log-concave.
We now come to the general case. Enumerate the minimal holes Hmin = {H1, . . . ,Hl}; by

assumption, |Hj | ⩾ 2 ∀j. We choose a hole from Hmin via the following algorithm:

(1) List the elements of each Hj as 1 ⩽ i
(j)
1 < i

(j)
2 < · · · . Now define i1 := maxj∈[l] i

(j)
1 and

J1 := {j ∈ [l] : i
(j)
1 = i1}.

(2) Next, from among these j, define i2 to be the smallest “next element”, i.e., i2 := minj∈J1 i
(j)
2 .

Also define J2 := {j ∈ J1 : i
(j)
2 = i2}.

(3) From this set J2, choose any index j0 and fix that minimal hole Hj0 .

Now we proceed. As in the special case H = {H} above, set β = αi2 and µ = −
∑i2−1

i=i1+1 αi −
β −

∑m
r=1 lrαir , where lr := λ(hir) + 1 for all r ∈ [m] as above. We show that the log-concavity of

charM(λ,H) fails at λ+ (µ+ β), λ+ µ, λ+ (µ− β).
Given p ∈ N, define µp := µ+ β − pβ. We claim that the weight space

Vλ+µp = 0 ∀p ∈ N, where V :=
∑

j∈[l], j ̸=j0

Ug ·
∏
i∈Hj

f
λ(hi)+1
i ·mλ. (5.3)

As M(λ,H) ∼= M(λ, {Hj0})/V , showing (5.3) would finish the proof, since it reduces the computa-
tion of weight space dimensions for all p to the previously considered special case (5.1):

dimM(λ,H)λ+µp = dimM(λ, {Hj0})λ+µp ∀p ⩾ 0,

and these dimensions were shown above to violate log-concavity for p = 0, 1, 2 in (5.2).
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We thus conclude by showing (5.3). Fix p ∈ N and j ∈ [l]\{j0}, and list Hj = {i(j)1 < · · · < i
(j)
m′},

where m′ ⩾ 2. It suffices to show the sub-claim that dim(Vj)λ+µp = 0, where we set

Vj := Ug ·
∏
i∈Hj

f
λ(hi)+1
i ·mλ

∼= M

(
λ−

m′∑
r=1

(λ(h
i
(j)
r
) + 1)αir

)

for compactness of notation.
To show the sub-claim, list the elements of the hole Hj0 as {i1 < · · · < im} for some m ⩾ 2,

and consider two cases for the index i
(j)
1 in Hj . If i

(j)
1 < i1 then all weights of Vj are of the form

λ − α
i
(j)
1

−
∑

i∈I aiαi for ai ∈ N; as the αi are linearly independent in h∗, this would never yield

λ+ µp.

Else by choice of i1 in the algorithm above, i
(j)
1 = i1, i.e. j ∈ J1. By that same algorithm, now

we must have i
(j)
2 ⩾ i2. Hence all i

(j)
r ⩾ i2 for all r ⩾ 2. Now if any i

(j)
r ̸∈ Hj0 then the same weight

consideration in the preceding paragraph shows that dim(Vj)λ+µp = 0.

This brings us to the case where all i
(j)
r ∈ Hj0 . But then Hj ⊆ Hj0 , which violates the minimal-

ity/irredundancy of the holes Hmin = {H1, . . . ,Hl}. This contradiction shows that dim(Vj)µp = 0
for j ̸= j0, which in turn shows (5.3) and completes the proof. □

Remark 5.6. The reason (we suspect) why log-concavity does not go through for higher order
Verma modules is that they cannot be obtained via parabolic induction. As a prototypical example,
let g = sl2(C) ⊕ sl2(C), and consider the “simplest” second order Verma module – the one with
highest weight (0, 0). This is the module

M((0, 0), {{1, 2}}) = M(0, 0)/M(−2,−2),

and it has zero or one dimensional weight spaces, with weights −pα1,−pα2 for p ∈ N. Already by
considering its character (a sum of two geometric series with “ratios” e−α1 and e−α2) we see that
this is not a nontrivial product, hence the module is not induced from a submodule over a proper
Lie subalgebra. This is unlike every parabolic Verma module over every semisimple Lie algebra,
for which the induced module construction (3.2) was crucial in proving log-concavity above.

That said, in this specific instance the character is indeed log-concave along all root directions;
we study this in greater detail in the next section.

6. Characters of usual, parabolic, and higher order Vermas over products of
type-A

In this concluding section, we generalize our main results in the previous sections (Theorems 1.5
and 1.7), going from the family {sln+1 : n ∈ N} to a larger family of complex semisimple Lie
algebras. More precisely, we show that (parabolic) Verma module characters over this larger family
are log-concave, but higher order Verma characters are not.

Fix positive integers T and n1, . . . , nT , let gt = slnt+1(C), and set

g =

T⊕
t=1

slnt+1(C) = ⊕T
t=1gt.

Correspondingly, we set notation: the Dynkin diagram is a disjoint union of type-A connected
components, with sets of nodes

It := [nt], I =

T⊔
t=1

It = {(t, i) : t ∈ [T ], i ∈ [nt]}.
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The set of positive roots is the union of the individual positive root-sets: ∆ = ⊔Tt=1∆t, and similarly

for the simple roots. The space of “highest weights” is h∗ =
⊕T

t=1 h
∗
t , and given J ⊆ I, J and the

space of J-dominant integral weights Λ+
J ⊂ h∗ split similarly:

J =
T⊔
t=1

Jt, Jt = J ∩ It; Λ+
J =

T⊕
t=1

Λ+
Jt
,

where Λ+
Jt
⊂ h∗t . We conclude this work by showing that the log-concavity of parabolic Verma

characters extends to products of sln’s, but this again fails for higher order Vermas (unless sl2’s are
involved – in which case one only has singleton holes in each Dynkin component).

Theorem 6.1. (First order case) Given J ⊆ I, and a highest weight λ = (λt)
T
t=1 ∈ Λ+

J , the

normalized shifted character N(xδ · charM(λ, J)) of every parabolic Verma module is Lorentzian,
and hence N(xδ ·charM(λ, J)) is continuously log-concave and charM(λ, J) is discretely (along all

root directions in ∆) log-concave. Here, δ ∈ Nd is arbitrary, with d =
∑T

t=1(nt + 1).
(Higher order case) Next, let H = ⊔Tt=1Ht be an independent set of simple roots/nodes in the

Dynkin diagram. The following are equivalent for a weight λ ∈ Λ+
H :

(1) The character of the higher order Verma module M(λ, {H}) is discretely log-concave along
all root directions in ∆.

(2) charM(λ, {H}) is discretely log-concave along all simple root directions.
(3) Either H is a singleton set, or for every t ∈ [T ], either Ht is empty or Ht is a singleton

and equal to all of It (i.e., nt = 1).

Proof. For the first order case, standard results [23] yield that (using the above notation)

M(λ, J) ∼=
T⊗
t=1

Mgt(λt, Jt). (6.1)

From this it follows – upon writing δ = (δt)
T
t=1 and decomposing the d variables x into individual

(nt + 1)-tuples x(t) – that

N(xδ · charM(λ, J)) =
T∏
t=1

N((x(t))δt · charMgt(λt, Jt)),

and this is Lorentzian by Theorem 1.5, hence N(xδ · charM(λ, J)) is continuously log-concave and
charM(λ, J) is discretely log-concave by Theorem 1.4.

We now come to the higher order case. Clearly (1) =⇒ (2). We next assume (3) and show (1).
First if H is a singleton set, say H = {i1} ⊆ I1 without loss of generality, then by (5.1) and (6.1),

M(λ, {H}) = M(λ, {i1}) ∼= Mg1(λ1, {i1})⊗
T⊗
t=2

Mgt(λt),

and we obtain (1) by the previous part.
Otherwise, first if all Ht are empty then M(λ, {H}) = M(λ), and we again reduce to the previous

part. Else assume without loss of generality that H = {i1, . . . , it0} for some t0 ∈ [T ], with Ht =
{it} = It for t ∈ [t0]. Thus gt ∼= sl2(C) for t ∈ [t0]. Then by (3.3),

Ug ·
∏
i∈H

f
λ(hi)+1
i ·mλ = Ug ·

t0∏
t=1

f
λ(hit )+1
it

·mλ

∼=
t0⊗
t=1

Mgt(λt − (λt(hit) + 1)αit)⊗
T⊗

t=t0+1

Mgt(λt).
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It follows by setting

g′ := ⊕t0
t=1gt

∼= sl2(C)⊕t0 , λ′ := ⊕t0
t=1λt

that

M(λ, {H}) ∼= Mg′(λ
′, {H})⊗

T⊗
t=t0+1

Mgt(λt).

As Verma module characters (i.e. KPFs) are log-concave [22], and the characters of the tensor
factors here are in disjoint sets of variables, to deduce (1) it suffices to show that charMg′(λ

′, {H})
is discrete log-concave along the (simple) root directions αi1 , . . . , αit0

. But

Mg′(λ
′, {H}) ∼=

⊗t0
t=1Mgt(λt)

⊗t0
t=1Mgt(λt − (λt(hit) + 1)αit)

, (6.2)

and all weight spaces in the numerator and denominator are one-dimensional, by sl2-theory. Since
the positive/simple roots in g′ are pairwise orthogonal, the character of Mg′(λ

′, {H}) “equals” the
set-difference of “doubled lattice” points in shifted negative orthants:

v − 2Nt0 \w − 2Nt0 , where v = (λt(hit))
t0
t=1, w = (−λt(hit)− 2)t0t=1.

Now along any “downward” ray parallel to a coordinate axis, i.e. a (simple) root direction, the
multiplicities in the quotient module either form a sequence of ones, or read 1, . . . , 1, 0, 0, . . . . Both
sequences are log-concave, again yielding (1).

Finally, we show the contrapositive of the implication (2) =⇒ (3). There are two cases: first
suppose some Ht has size at least 2, say HT . Set

λ′ := λ−
T−1∑
t=1

∑
i∈Ht

(λt(hi) + 1)αi = wt
∏

i∈H\HT

f
λ(hi)+1
i ·mλ,

and note by “sl
⊕(|H|−|HT |)
2 -theory” that the KPF-value dimM(λ)λ′ = 1. So for any N-linear com-

bination of (simple) roots in ∆T , say γ ∈ N∆T , it follows that

M(λ, {H})λ′−γ =
T−1⊗
t=1

(
C
∏
i∈Ht

f
λ(hi)+1
i ·mλt

)
⊗MgT (λT , {HT })λT−γ . (6.3)

By Theorem 5.5, there exist a weight µ ∈ h∗T and a simple root β ∈ ∆T such that µ+β ∈ −N∆T

and the multiplicities dimMgT (λT , {HT })β violate log-concavity at λT +µ, λT +µ±β. We are now
done by setting γ = −µ,−µ± β in (6.3).

The other case is when all Ht are singletons or empty (which information we do not use below), at
least two Ht are singletons, and for at least one of these t we have nt > 1. Thus, say HT−1 = {iT−1}
and HT = {iT }, and nT > 1. This last yields i0 ∈ IT which is adjacent to iT in the Dynkin diagram.
Now set

µ = λ− αi0 −
∑
i∈H

(λ(hi) + 1)αi, β = αiT−1 .

We will show that charM(λ, {H}) is not log-concave at the weights µ, µ ± β. Indeed, since
M(λ, {H}) ∼= M(λ)/M(µ+ αi0), we see that

dimM(λ, {H})µ = dimM(λ)µ − dimM(µ+ αi0)µ = dimM(λ)µ − 1 = 1,

where (for expositional sake) we detail the proof of the final equality. The simple roots occurring
in λ − µ are {αi : i ∈ H} and αi0 . The only connected Dynkin subdiagram in these is the edge
i0 ←→ iT . Thus,

dimM(λ)µ = K(αi0 + (λ(hiT ) + 1)αiT ),
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and this equals 2, either by writing this weight as a sum of simple roots, or as (αi0 + αiT ) plus
λ(hiT )-many copies of αiT . This calculation also applies to show that dimM(λ)µ±β = 2. Hence,

dimM(λ, {H})µ−β = dimM(λ)µ−β − dimM(µ+ αi0)µ−β = 2− 1 = 1.

On the other hand, µ+ β is not in the weights of M(µ+ αi0) = µ+ αi0 − N∆. Thus,

dimM(λ, {H})µ = dimM(λ)µ+β,

which equals 2 from above. Summarizing,

dimM(λ, {H})µ+β = 2, dimM(λ, {H})µ = dimM(λ, {H})µ−β = 1,

and log-concavity fails along the αiT−1-direction. □
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