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ABSTRACT. We study the equivariant cohomology classes of torus-equivariant subvarieties of the space of
matrices. For a large class of torus actions, we prove that the polynomials representing these classes (up to
suitably changing signs) are covolume polynomials in the sense of Aluffi. We study the cohomology rings
of complex varieties in terms of Macaulay inverse systems over Z. As applications, we show that under
certain conditions, the Macaulay dual generator is a denormalized Lorentzian polynomial in the sense of
Brändén and Huh, and we give a characteristic-free extension (over Z) of the result of Khovanskii and
Pukhlikov describing the cohomology ring of toric varieties in terms of volume polynomials.

1. INTRODUCTION

A sequence of real numbers a0,a1, . . . ,an is called log-concave if a2
i ⩾ai−1ai+1 for all 1⩽ i⩽n−1.

Log-concave sequences naturally appear throughout algebra, combinatorics, and geometry; for thorough
references on log-concavity and related concepts, we suggest [Bre89, Sta89, Brä15]. Recently, the theory
of Lorentzian polynomials was introduced by Brändén and Huh [BH20] (and in [AGV21, ALOGV24a,
ALOGV24b] under the name of completely log-concave polynomials) and they have been instrumental
in proving log-concavity and related results throughout mathematics, see, e.g., [BH20, EH20, MS21,
HMMSD22, BL23, BLP23, Ros23, ALOGV24b, BES24, HMV24, KMSD24, MMS24, RU24].

The prototypical examples of Lorentzian polynomials are the volume polynomials of projective va-
rieties [BH20]. Likewise, the covolume polynomials of Aluffi [Alu24] are the prototypical examples of
the dually Lorentzian polynomials of Ross, Süß, and Wannerer [RSW23]. We introduce a new family
of polynomials that specialize to a number of important polynomials in algebraic combinatorics, and we
prove that they are covolume polynomials.

For two permutations u,w ∈ Sn with w⩾ u in Bruhat order, we define the double Richardson poly-
nomial as the product of double Schubert polynomials

Rw/u(t,s) = Su(t,s)Sw0w(t,s ′),

where s ′ = (sn, . . . ,s1) denotes the reverse of s = (s1, . . . ,sn). The double Richardson polynomial repre-
sents the torus-equivariant class of matrix Richardson varieties in the cohomology ring H•

T (Matn,n) of
the space of n×n matrices with the standard action of the torus T = (C∗)n×(C∗)n. Double Richardson
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polynomials specialize to (double) Schubert polynomials:

Su(t,s) = Rw0/u(t,s) and Su(t,0) = Su(t) = Rw0/u(t,0).

The Richardson polynomial Rw/u(t) = Rw/u(t,0) is closely related to the skew Schubert polynomial
Sw/u(t) of Lenart and Sottile [LS03] since both polynomials yield the same class in the cohomology
ring H•(Fℓn) of the flag variety Fℓn. But we point out that Rw/u(t) and Sw/u(t) may not be equal in
general (see Remark 5.8).

Theorem A (Theorem 5.4). The (sign-changed) double Richardson polynomial Rw/u(t,−s) is a covol-
ume polynomial.

Dually Lorentzian polynomials enjoy two nice combinatorial properties (see Proposition 5.5): their
supports are M-convex, and they are discretely log-concave. A homogeneous polynomial h =

∑
nantn

of degree d with nonnegative coefficients is said to have M-convex support if supp(h) is the set of integer
points of a generalized permutohedron in the sense of [Pos09], and it is said to be discretely log-concave
if a2

n ⩾ an+ei−ejan−ei+ej for all n ∈ Nn and all 1 ⩽ i, j⩽ n.

Corollary B (Corollary 5.7). The following polynomials have M-convex support and are discretely log-
concave:

(i) (sign-changed) Double Richardson polynomials Rw/u(t,−s).
(ii) Richardson polynomials Rw/u(t).

(iii) (sign-changed) Double Schubert polynomials Su(t,−s).
(iv) Schubert polynomials Su(t).

We note that the M-convexity in Corollary B(iii) recovers a result of [CCRMMn23] and both the M-
convexity and the discrete log-concavity in Corollary B(iv) recover results of [HMMSD22]. To the best
of our knowledge, the discrete log-concavity of double Schubert polynomials is new.

The proof of Theorem A follows from a general theorem that we prove in Section 4. More precisely,
we prove the following result regarding the equivariant cohomology classes of torus-equivariant subva-
rieties of the space of matrices.

Theorem C (Theorem 4.5, Corollary 4.6). Let Matm,n = Cm×n be the space of m×n matrices with
complex entries and consider the natural action of the torus T = (C∗)m× (C∗)n given by (g,h) ·M =

g ·M · h−1 for all M ∈ Matm,n and (g,h) ∈ T . Let X ⊂ Matm,n be an irreducible T -subvariety
and CX(t1, . . . ,tm,s1, . . . ,sn) be the polynomial representing the class [X]T of X in H•

T (Matm,n) =

Z[t1, . . . ,tm,s1, . . . ,sn]. Then we have that CX(t1, . . . ,tm,−s1, . . . ,−sn) is a covolume polynomial.

We point out that the result of Theorem C is sharp in the sense that for arbitrary torus actions we
can find simple instances where the equivariant class of an irreducible T -variety is represented by a
polynomial which does not even have M-convex support (see Example 4.2).

We also connect the theory of Macaulay inverse systems over Z to the theory of Lorentzian polyno-
mials. More precisely, we study the cohomology rings of smooth complex algebraic varieties over Z in
terms of a suitable generic version of the Macaulay inverse system. In this characteristic-free situation
over Z, we show that the respective Macaulay dual generator is a denormalized Lorentzian polynomial
(see Theorem D below).
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Over a field of a characteristic zero, say the field of rational numbers Q, the cohomology ring H•(X,Q)
of a smooth complex algebraic variety X is a classical example of an Artinian graded Gorenstein algebra
(due to the Poincaré duality of H•(X,Q)). Therefore, the Macaulay inverse system stands as a powerful
tool to study the cohomology ring H•(X,Q) because Artinian graded Gorenstein algebras can be defined
in terms of the annihilator of a single polynomial in a dual polynomial ring (see, e.g., [Eis95, §21.2],
[CLS11, §13.4]). Perhaps the most spectacular application of this idea is the result of Khovanskii and
Pukhlikov [KP92] describing the cohomology ring of a smooth complete toric variety in terms of the
annihilator of the volume polynomial. For more recent applications and related results, the reader is
referred to [Kav11, HMM+13, KM21, KLM22, LMK22, MMSW22, HKM24].

Our interest is to study the cohomology ring H•(X,Z) of a smooth complex algebraic variety X as a
Z-algebra and to find suitable extensions of the aforementioned known results for H•(X,Q). To substitute
the fact that H•(X,Q) is an Artinian graded Gorenstein algebra, we should have that the structure mor-
phism f : Spec(H•(X,Z))→ Spec(Z) is a finite Gorenstein morphism (i.e.; f is a finite flat morphism and
all its fibers are Gorenstein rings); if this happens, we say H•(X,Z) is Artinian Gorenstein over Z. We
also need to consider generic versions of the Matlis and Macaulay dual functors. (These generic versions
have become of interest recently, see, e.g., [Smi18, CCRS21, KK22, CR23].) Let S= Z[x1, . . . ,xn] be a
positively graded polynomial ring and consider the inverse polynomial ring T = Z[y1, . . . ,yn] under the
identification yi = x−1

i . For any homogeneous ideal I⊂ S such that the quotient R= S/I is a finitely gen-
erated flat Z-module, we have a successful Macaulay inverse system I⊥Z = {G∈ T | g ·G= 0 for all g∈ I}

that can be computed with the graded Matlis dual R∨Z = ∗HomZ(R,Z). We make the necessary devel-
opments of these notions in §6.1. Our main result regarding cohomology rings is the following theorem.

Theorem D (Theorem 6.13, Corollary 6.16). Let X be a d-dimensional smooth complex algebraic vari-
ety. Suppose that the cohomology ring R=

⊕d
i=0 H2i(X,Z) is a flat Z-algebra (i.e., it is Z-torsion-free).

Let ρ : Rd = H2d(X,Z)→ Z be the natural degree map. Choose a graded presentation R ∼= S/I where
S = Z[x1, . . . ,xn], δi = deg(xi) > 0, and I⊂ S is a homogeneous ideal. Let δ = δ1 + · · ·+δn. Then the
following statements hold:

(i) R is Artinian Gorenstein over Z.
(ii) We have the isomorphisms ωR/Z = ExtnS (R,S(−δ)) ∼= ∗HomZ(R,Z) ∼= R(d).

(iii) Consider the inverse polynomial ring T = Z[y1, . . . ,yn] with the identification yi = x−1
i . Then the

ideal I⊂ S is given as the annihilator

I = {g ∈ S | g ·GR = 0}

of the inverse polynomial

GR(y1, . . . ,yn) =
∑

α1δ1+···+αnδn=d

ρ
(
xα1

1 · · ·xαn
n

)
yα1

1 · · ·yαn
n ∈ T = Z[y1, . . . ,yn].

(iv) Assume also that X is complete and that each xi is equal to the first Chern class c1(Li) of a nef line
bundle Li on X. Then the normalization

N(GR) ∈ R[y1, . . . ,yn]

of GR is a Lorentzian polynomial.
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(v) Assume also that X = XΣ is a complete toric variety and that each xi is equal to the class of a
torus-invariant nef Cartier divisor Di on X. Let Pi = PDi

be the polytope associated to Di. Then

GR(y1, . . . ,yn) =
∑

α1+···+αn=d

MVα(P1, . . . ,Pn)y
α1
1 · · ·yαn

n ∈ T = Z[y1, . . . ,yn],

where MVα(P1, . . . ,Pn) is the mixed volume of P1, . . . ,Pn of type α= (α1, . . . ,αn).

Motivated by Theorem D, we say that GR ∈ T = Z[y1, . . . ,yn] is the Macaulay dual generator of the
cohomology ring R= H•(X,Z) over Z. We perform several explicit computations with examples in §6.2.

Outline. The basic outline of this paper is as follows. In Section 2, we recall some basic results and
we fix the notation. In Section 3, we study the multidegree polynomial of prime ideals in positive but
not necessarily standard gradings. We prove Theorem C in Section 4. The proofs of Theorem A and
Corollary B are given in Section 5. Finally, Section 6 contains the proof of Theorem D.

2. PRELIMINARIES

In this section, we set up the notation used throughout the paper. We also present some preliminary
results necessary to prove our main theorems.

2.1. Double Schubert polynomials. Let p ⩾ 1 be a positive integer. Let [p] := {1,2, . . . ,p} and
([p]

k

)
denote the set of size k subsets of [p]. For I = {i1 < i2 < · · · < ik}, J = {j1 < j2 < · · · < jk} ∈

([p]
k

)
, we

define a partial order on
([p]

k

)
where I ⩽ J if im ⩽ jm for all m ∈ [k]. We write Sp for the symmetric

group of permutations on [p]. For any w ∈ Sp, we use one-line notation, i.e., w = (a1,a2, . . . ,ap) with
w(i) = ai. For any k ∈ [p], we write w[k] := {w(1),w(2), . . . ,w(k)}. We say (i, j) is an inversion of
w if 1 ⩽ i < j ⩽ p and w(i) > w(j). For every i ∈ [p− 1] = {1, . . . ,p− 1}, we have the transposition
si = (i, i+1)∈ Sp. The length ℓ(w) of a permutation w is the number of inversions of w or, equivalently,
the minimum number of transpositions si of which w can be written as a product.

We equip Sp with a partial order structure known as Bruhat order. For comprehensive references on
Bruhat order and related topics, we point to [Hum90, BB05].

Definition 2.1. For u,w ∈ Sp, we say w⩾ u in Bruhat order if w[i]⩾ u[i] for all i ∈ [p].

Double Schubert polynomials were introduced by Lascoux and Schützenberger [LS82] and can be
defined via divided difference operators.

Definition 2.2. The i-th divided difference operator ∂i takes each polynomial f ∈ Z[t1, . . . ,tp] to

∂if(t1, . . . ,tp) =
f(t1, . . . ,tp)− f(t1, . . . ,ti−1,ti+1,ti,ti+2 . . . ,tp)

ti− ti+1
.

The Schubert polynomial for w ∈ Sp is defined by the recursion

Sw(t1, . . . ,tp) = ∂iSwsi(t1, . . . ,tp)

whenever ℓ(w) < ℓ(wsi), with initial data Sw0(t1, . . . ,tp) =
∏p−1

i=1 t
p−i
i ∈ Z[t1, . . . ,tp]. The double

Schubert polynomials Sw(t,s) are defined by the same recursion where the divided difference operators
only act on the ti’s, but starting from Sw0(t,s) =

∏
i+j⩽p(ti− sj) ∈ Z[t1, . . . ,tp,s1, . . . ,sp].
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2.2. Multidegrees. Here we recall the definition and basic properties of multidegrees as presented in
[KM05] and [MS05, Chapter 8].

Let R = k[x1, . . . ,xn] be a Zp-graded polynomial ring over a field k. Let M be a finitely gener-
ated Zp-graded R-module and F• be a Zp-graded free R-resolution F• : · · · → Fi → Fi−1 → ·· · →
F1 → F0 of M. Let t1, . . . ,tp be variables over Z and consider the Laurent polynomial ring Z[t, t−1] =

Z[t1, . . . ,tp,t−1
1 , . . . ,t−1

p ], where the variable ti corresponds with the i-th elementary vector ei ∈ Zp. If
we write Fi =

⊕
jR(−bi,j) with bi,j = (bi,j,1, . . . ,bi,j,p) ∈ Zp, then we define the Laurent polynomial

[Fi]t :=
∑

j tbi,j =
∑

j t
bi,j,1
1 · · ·tbi,j,p

p .

Definition 2.3. The K-polynomial of M is the Laurent polynomial given by

K(M; t) :=
∑
i

(−1)i [Fi]t .

We have that, even if the grading of R is non-positive and we do not have a well-defined notion of
Hilbert series, the above definition of K-polynomial is an invariant of the module M and it does not
depend on the chosen free R-resolution F• (see [MS05, Theorem 8.34]).

Definition 2.4. The multidegree polynomial of M is the homogeneous polynomial C(M; t) ∈ Z[t] given
as the sum of all terms in K(M;1− t) =K(M;1− t1, . . . ,1− tp) having total degree codim(M), which
is the lowest degree appearing.

2.3. Lorentzian and covolume polynomials. In this subsection, we briefly recall Lorentzian polyno-
mials, dually Lorentzian polynomials, and covolume polynomials.

A subset J ⊂ Np is called M-convex if for any q = (q1, . . . ,qp) and r = (r1, . . . ,rp) in J, and any
i where qi < ri, there exists j such that qj > rj and both points q+ ei − ej and r− ei + ej are also
contained in J. We point out that M-convex sets are equivalent to basis elements of discrete polymatroids
[Mur03, Sch03] and integer points of generalized permutohedra [Pos09]. A polynomial with M-convex
support has saturated Newton polytope (SNP). In [MTY19], Monical, Tokcan, and Yong conjectured that
many polynomials in algebraic combinatorics have saturated Newton polytopes.

Let h(t1, . . . ,tp) be a homogeneous polynomial of degree d in R[t] = R[t1, . . . ,tp].

Definition 2.5 ([BH20]). The homogeneous polynomial h is called Lorentzian if the following condi-
tions hold:

(i) The coefficients of h are nonnegative.
(ii) The support of h is M-convex.

(iii) The quadratic form ∂
∂ti1

∂
∂ti2

· · · ∂
∂tie

h has at most one positive eigenvalue for any i1, . . . , ie ∈ [p]

where e= d−2.

There are several linear operators discussed in [BH20] that preserve the Lorentzian property. In par-
ticular, the normalization operator

N

(∑
n

antn

)
:=

∑
n

an

n!
tn where n! := n1! · · ·np!,

preserves the Lorentzian property [BH20, Corollary 3.7].
In [Alu24], Aluffi defined the notion of covolume polynomials. These polynomials arise by consider-

ing the Chow classes of irreducible subvarieties of a product of projective spaces.
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Definition 2.6 ([Alu24]). Let P = Pm1
k ×k · · · ×k P

mp

k be a multiprojective space over a field k. Let
X⊂ P be an irreducible subvariety of codimension c. The class of X can be written as

[X] =
∑
|n|=c

anH
n1
1 · · ·Hnp

p ∈ A•(P) = Z[H1, . . . ,Hp]/
(
Hm1+1

1 , . . . ,Hmp+1
p

)
.

Let P[X](t1, . . . ,tp) =
∑

|n|=cantn be the polynomial associated to the class [X] of X⊂ P. A polynomial
P(t1, . . . ,tp) ∈ R[t1, . . . ,tp] with nonnegative real coefficients is a covolume polynomial if it is a limit of
polynomials of the form cP[X] for a positive real number c and an irreducible subvariety X of P.

We are interested in the family of dually Lorentzian polynomials introduced by Ross, Süß, and Wan-
nerer [RSW23].

Definition 2.7 ([RSW23]). A polynomial h ∈ R[t1, . . . ,tp] is dually Lorentzian if

N
(
tm1

1 · · ·tmp
p h

(
t−1

1 , . . . ,t−1
p

))
is Lorentzian for some m = (m1, . . . ,mp) sufficiently large (i.e., such that tm1

1 · · ·tmp
p h

(
t−1

1 , . . . ,t−1
p

)
is

a polynomial).

As shown by Aluffi [Alu24, Proposition 2.8], covolume polynomials form a subfamily of the family
of dually Lorentzian polynomials.

Remark 2.8. For any monomial xα1
1 · · ·xαn

p and any polynomial h ∈ R[t1, . . . ,tp], we have that h is
dually Lorentzian if and only if xα1

1 · · ·xαn
p h is dually Lorentzian.

Proof. This follows directly from [HMMSD22, Lemma 7]. □

Finally, we introduce the following definition.

Definition 2.9. For any polynomial h=
∑

nantn ∈ R[t1, . . . ,tp] and any w ∈ Np, the w-truncation of h
is the polynomial given by

∑
n⩽wantn ∈ R[t1, . . . ,tp].

3. MULTIDEGREE POLYNOMIALS OF PRIME IDEALS IN NON-STANDARD GRADINGS

In this section, working over an arbitrary positive Np-grading, we show that the multidegree polyno-
mial of a prime ideal is a covolume polynomial. Our main tool is the technique of standardization that
was used in [CCRMMn23, CCRC23].

Let k be an algebraically closed field and R= k[x1, . . . ,xn] be a positively Np-graded polynomial ring
(that is, deg(xi) ∈ Np \ {0} for all 1 ⩽ i ⩽ n and deg(α) = 0 ∈ Np for all α ∈ k). Let M be a finitely
generated Zp-graded R-module. Since R is assumed to be positively graded, there is a well-defined
notion of Hilbert series

HilbM(t) = HilbM(t1, . . . ,tp) :=
∑

n∈Zp

dimk ([M]n) tn =
∑

n=(n1,...,np)∈Zp

dimk ([M]n)t
n1
1 · · ·tnp

p ,

and then we can write

HilbM(t) =
K(M; t)∏n

i=1
(
1− tdeg(xi)

) .

Below we discuss the case of a standard multigrading. This case is of special importance since it deals
with closed subschemes of a product of projective spaces.
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Remark 3.1 (Standard multigradings). Assume that R has a standard Np-grading (i.e., |deg(xi)| = 1)
and that R is the coordinate ring of P = Pm1

k ×k · · · ×k P
mp

k . Let X ⊂ P be a d-dimensional integral
closed subscheme with coordinate ring R/P, where P is an R-homogeneous prime ideal. The class of X
in the Chow ring of P is given by

[X] =
∑

n=(n1,...,np)∈Np

|n|=n1+···+np=d

degn
P(X) ·H

m1−n1
1 · · ·Hmp−np

p ∈ A•(P) =
Z[H1, . . . ,Hp](

Hm1+1
1 , . . . ,Hmp+1

p

) ,

where Hi represents the class of the inverse image of a hyperplane of Pmi

k . We say that degn
P(X) is the

multidegree of X of type n. Then the multidegree polynomial of R/P is given by

C(R/P; t) =
∑

n∈Np, |n|=d

degn
P(X) · t

m1−n1
1 · · ·tmp−np

p .

The volume polynomial of X (see [BH20, §4.2]) is given by

volX(t) =

∫ (
H1t1 + · · ·+Hptp

)d∩ [X] =
∑

n∈Np, |n|=d

degn
P(X) ·

d!
n1! · · ·np!

· tn1
1 · · ·tnp

p .

Due to a fundamental result of Brändén and Huh (see [BH20, Theorem 4.6]), we have that volX(t) is a
Lorentzian polynomial.

The following lemma tells us that multidegree polynomials in a standard multigrading are dually
Lorentzian [RSW23]. This result already appeared in [Alu24, Proposition 2.8] (also, see [HMMSD22,
Theorem 6]), but here we give a short self-contained proof.

Lemma 3.2. Keep the same notations and assumptions of Remark 3.1. Consider the polynomial

F(t1, . . . ,tp) = tm1
1 · · ·tmp

p ·C
(
R/P;

1
t1

, . . . ,
1
tp

)
.

Then the normalization N(F) is a Lorentzian polynomial (i.e., C(R/P; t) is dually Lorentzian).

Proof. From Remark 3.1, we derive the following equalities

N(F(t)) = N

(
tm1

1 · · ·tmp
p ·C

(
R/P;

1
t1

, . . . ,
1
tp

))

= N

(
tm1

1 · · ·tmp
p ·

∑
n∈Np, |n|=d

degn
P(X) ·

1
tm1−n1

1
· · · 1

t
mp−np
p

)

= N

( ∑
n∈Np, |n|=d

degn
P(X) · t

n1
1 · · ·tnp

p

)

=
∑

n∈Np, |n|=d

degn
P(X) ·

1
n1! · · ·np!

· tn1
1 · · ·tnp

p

=
1
d!

·volX(t).

Therefore [BH20, Theorem 4.6] implies that N(F) is Lorentzian. □
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We now describe some basic properties of the process of standardization as developed in [CCRMMn23,
CCRC23]. For the rest of the section, the following setup is fixed.

Setup 3.3. For 1 ⩽ i⩽ n, let ℓi = |deg(xi)| be the total degree of the variable xi. Let

S = k
[
yi,j | 1 ⩽ i⩽ n and 1 ⩽ j⩽ ℓi

]
be a standard Np-graded polynomial ring such that

deg(xi) =

ℓi∑
j=1

deg(yi,j) for all 1 ⩽ i⩽ n.

We define the Np-graded k-algebra homomorphism

ϕ : R= k[x]−→ S= k[y], ϕ(xi) = yi,1yi,2 · · ·yi,ℓi .

For an R-homogeneous ideal I ⊂ R, we say that the extension J = ϕ(I)S is the standardization of I,
since J ⊂ S is an S-homogeneous ideal in the standard Np-graded polynomial ring S. By a slight abuse
of notation, we consider both multidegree polynomials C(R/I; t) and C(S/J; t) as elements of the same
polynomial ring Z[t] = Z[t1, . . . ,tp].

The next theorem contains some of the basic and desirable properties of the standardization of an
ideal.

Theorem 3.4 ([CCRC23, Theorem 7.2], [CCRMMn23, Proposition 4.2]). Let I⊂R be an R-homogeneous
ideal and J= ϕ(I)S be its standardization. Then the following statements hold:

(i) codim(I) = codim(J).
(ii) I⊂ R and J⊂ S have the same Np-graded Betti numbers.

(iii) K(R/I; t) =K(S/J; t) and C(R/I; t) = C(S/J; t).
(iv) R/I is a Cohen–Macaulay ring if and only if S/J is a Cohen–Macaulay ring.
(v) Let > be a monomial order on R and > ′ be a monomial order on S which is compatible with ϕ

(i.e., if f,g ∈ R with f > g, then ϕ(f)> ′ ϕ(g)). Then in> ′(J) = ϕ(in>(I))S.
(vi) If I⊂ R is a prime ideal and it does not contain any variable, then J⊂ S is also a prime ideal.

Finally, we are ready to present the main result of this section. It yields a large new family of covolume
polynomials.

Theorem 3.5. Let P ⊂ R be a prime R-homogeneous ideal. Then C(R/P; t) is a covolume polynomial.

Proof. Let L= {i | xi ∈ P} be the set that indexes the variables belonging to P. Write P= P ′+(xi | i ∈ L)

with P ′ ⊂ R only involving the variables not in L. Let T = R [zi | i ∈ L] be a positively Np-graded poly-
nomial ring extending the grading of R and with deg(zi) = deg(xi). Let P= P ′T+(xi−zi | i ∈ L)⊂ T .
Notice that P is a prime ideal containing no variable and that

C(T/P; t) =
∏
i∈L

⟨deg(xi−zi), t⟩ ·C(T/P ′T ; t) =
∏
i∈L

⟨deg(xi), t⟩ ·C(R/P ′; t) = C(R/P; t),

where ⟨deg(xi), t⟩=ai,1t1+ · · ·+ai,ptp ∈N[t] after writing (ai,1, . . . ,ai,p)= deg(xi)∈Np (see [MS05,
Exercise 8.12]). Let W = S

[
wi,j | i ∈ L,1 ⩽ j⩽ ℓi

]
be a standard Np-graded polynomial ring where we
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consider the corresponding standardization Q⊂W of P⊂ T . From Theorem 3.4(iii), we get

C(R/P; t) = C(T/P; t) = C(W/Q; t).

Finally, Q⊂W is a prime ideal by Theorem 3.4(vi), and so the result follows by Remark 3.1. □

4. EQUIVARIANT COHOMOLOGY IN MULTIGRADED COMMUTATIVE ALGEBRA

In this section, we study the equivariant cohomology of the irreducible varieties that appear in multi-
graded commutative algebra. Here we show that, under suitable conditions, equivariant classes of irre-
ducible multigraded varieties yield covolume polynomials (up to changing the sign of negative coeffi-
cients). We follow the references [AF24] and [CG10, Chapter 5] for the basics of equivariant cohomology
and equivariant K-theory.

Let R= C[x1, . . . ,xn] be a polynomial ring with a Zp-grading. Let T = (C∗)p be a torus acting on An
C .

Any such Zp-grading can be specified by the torus weights. More precisely, if we have the action

(h1, . . . ,hp) · (a1, . . . ,an) =
(
h
d1,1
1 h

d1,2
2 · · ·hd1,p

p a1, hd2,1
1 h

d2,2
2 · · ·hd2,p

p a2, . . . , hdn,1
1 h

dn,2
2 · · ·hdn,p

p an

)
for all (h1, . . . ,hp) ∈ T and (a1, . . . ,an) ∈ An

C , then we obtain the specific grading deg(xi) = di =

(di,1,di,2, . . . ,di,p) ∈ Zp for all 1 ⩽ i ⩽ n. There is a bijective correspondence between Zp-graded
R-modules and T -equivariant coherent sheaves on An

C . Since An
C is smooth, the Grothendieck ring of

T -equivariant vector bundles coincides with the Grothendieck ring of T -equivariant coherent sheaves.
We denote this ring by KT (An

C ). The Grothendieck ring KT (An
C ) coincides with the Grothendieck ring

of a point and the representation ring of T :

KT (A
n
C )

∼= KT (pt) ∼= R(T) = Z[t1, . . . ,tp,t−1
1 , . . . ,t−1

p ].

Given a finitely generated Zp-graded R-module M (i.e., M̃ is a T -equivariant coherent sheaf on An
C ), we

denote by [M]T the equivariant class of M in KT (An
C )

∼= Z[t1, . . . ,tp,t−1
1 , . . . ,t−1

p ].
We consider the T -equivariant cohomology ring

H•
T (A

n
C ) := H•(ET ×T An

C

)
,

where ET is contractible with T acting freely (on the right). Then BT := ET/T is a classifying space for
T . Since we can take ET = (C∞ \ {0})n and BT = (P∞

C )n, it follows that

H•
T (A

n
C )

∼= ΛT := H•
T (pt) = H•(BT) = Z[t1, . . . ,tp].

Given a T -subvariety X ⊂ An
C , we denote by [X]T := [ET ×T X] the equivariant class of X in H•

T (A
n
C )

∼=

Z[t1, . . . ,tp].
The following remark allows us to apply our results in Section 3 to equivariant cohomology.

Remark 4.1. Let M be a finitely generated Zp-graded R-module and X⊂ An
C be a T -subvariety with co-

ordinate ring R/I. Let KM(t1, . . . ,tp) and CX(t1, . . . ,tp) be the Laurent polynomial and the polynomial
representing the classes [M]T ∈ KT (An

C ) and [X]T ∈ H•
T (A

n
C ), respectively. Then we have the equalities

KM(t1, . . . ,tp) = K(M;t1, . . . ,tp) and CX(t1, . . . ,tp) = C(R/I;t1, . . . ,tp).

Proof. See, e.g., [KM05, §] or [KMS06, Proposition 1.19]. □
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Then Theorem 3.5 poses the question of whether the class [X]T of any irreducible T -subvariety X⊂An
C

yields a covolume polynomial. The following example shows that it is not always the case for arbitrary
T -actions.

Example 4.2. Consider A2
C and the torus T = (C∗)2 with the action

(h1,h2) · (a1,a2) := (h1h2a1,h1h
−1
2 a2)

for all (a1,a2) ∈ A2
C and (h1,h2) ∈ T . Let R= C[x,y] be the coordinate ring of A2

C. The T -action above
specifies the grading deg(x) = (1,1)∈Z2 and deg(y) = (1,−1)∈Z2. Consider the variety X= {(0,0)}⊂
A2

C given by the origin. It is clearly irreducible, but the polynomial representative of the cohomology class

[X]T = C(R/(x,y);t1,t2) = (t1 + t2)(t1 − t2) = t2
1 − t2

2 (see, e.g., [MS05, Proposition 8.49])

is not a covolume polynomial (its support is not M-convex) after changing signs.

For the rest of this section, we shall use the following setup that avoids the complications of the
previous example.

Setup 4.3. Assume that the torus T is given as T = (C∗)q× (C∗)p−q where “(C∗)q comes with positive
weights and (C∗)p−q comes with negative weights”. More precisely, we require that

di ∈ Np \ {0} for all 1 ⩽ i⩽ q

and
−di ∈ Np \ {0} for all q+1 ⩽ i⩽ p.

In this case we say that the action of T determines a twisted positive grading on R.

The following lemma tells us that we can “flip” twisted positive gradings to positive gradings. A
version of this lemma appeared in [CCRMMn23, Lemma 3.3]. Let R̃ = k[x1, . . . ,xn] be a polynomial
ring with the same variables as R but with grading given by setting deg(xi) = di for 1 ⩽ i ⩽ q and
deg(xi) = −di for q+1 ⩽ i⩽ p. Notice that R̃ has a positive Np-grading.

Lemma 4.4. Assume Setup 4.3. Let I⊂ R be a Zp-graded ideal, and also denote by I the corresponding
Np-graded ideal in R̃. Then we have C(R̃/I;t1, . . . ,tq,tq+1, . . . ,tp)=C(R/I;t1, . . . ,tq,−tq+1, . . . ,−tp).

Proof. Let r = p−q and set si = tp+i for 1 ⩽ i ⩽ r. Notice that, if F̃• is a (Zq⊕Zr)-graded free R̃-
resolution of R̃/I with F̃i =

⊕
j R̃(−ai,j,−bi,j), then there is a corresponding (Zq⊕Zr)-graded free R-

resolution F• of R/I with Fi =
⊕

jR(−ai,j,bi,j). By definition, this yields the equality of K-polynomials

K(R̃/I; t,s) =K(R̃/I;t1, . . . ,tq,s1, . . . ,sr) =K(R/I;t1, . . . ,tq,s−1
1 , . . . ,s−1

r ) =K(R/I; t,s−1).

From [MS05, Claim 8.54], we have K(R/I;1− t,1− s) = C(R/I; t,s)+Q(t,s), where Q(t,s) is the sum
of the terms of degree at least codim(I)+ 1. Equivalently, we get K(R/I; t,s) = C(R/I;1− t,1− s)+
Q(1− t,1− s). It then follows that

K(R̃/I;1− t,1− s) = C(R/I;t1, . . . ,tq,1− 1
1−s1

, . . . ,1− 1
1−sr

)+Q(t1, . . . ,tq,1− 1
1−s1

, . . . ,1− 1
1−sr

).

By expanding the right hand side of the above equality, the result of the lemma is obtained. □

We are now ready to present the main result of this section.
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Theorem 4.5. Assume Setup 4.3. Let X ⊂ An
C be an irreducible T -subvariety and CX(t1, . . . ,tp) be the

polynomial representing the class [X]T ∈ H•
T (A

n
C ). Then CX(t1, . . . ,tq,−tq+1, . . . ,−tp) is a covolume

polynomial.

Proof. The result follows by combining Remark 4.1, Lemma 4.4, and Theorem 3.5. □

Our main application of the above theorem is the following corollary.

Corollary 4.6. Let Matm,n = Cm×n be the space of m×n matrices with complex entries and con-
sider the natural action of the torus T = (C∗)m × (C∗)n given by (g,h) ·M = g ·M · h−1 for all
M ∈ Matm,n and (g,h) ∈ T . Let X⊂ Matm,n be an irreducible T -variety and CX(t1, . . . ,tm,s1, . . . ,sn)
be the polynomial representing the class [X]T in H•

T (Matm,n) = Z[t1, . . . ,tm,s1, . . . ,sn]. Then we have
that CX(t1, . . . ,tm,−s1, . . . ,−sn) is a covolume polynomial.

5. EQUIVARIANT COHOMOLOGY OF MATRIX RICHARDSON VARIETIES

In this section, we study the equivariant cohomology of matrix Richardson varieties for a pair of
permutations. An interesting outcome of our approach is the definition of a new family of polynomials
that we call double Richardson polynomials. These polynomials specialize to many polynomials of
interest.

We take the viewpoint of studying Schubert varieties and Schubert polynomials through a certain
degeneracy loci problem that was introduced by Fulton [Ful92]. Let E• and F• be two flagged complex
vector spaces of dimension n with

F1 ⊂ ·· · ⊂ Fn = F and E= En ↠ · · ·↠ E1,

where dim(Fi) = dim(Ei) = i. By choosing bases, we identify Hom(F,E) with the space Matn,n ∼=

Cn×n of n×n matrices with complex entries. Consider the natural action of the torus T = (C∗)n×
(C∗)n given by (g,h) ·M = g ·M ·h−1 for all M ∈ Matn,n and (g,h) ∈ T . For a given permutation
w ∈ Sn, we consider the degeneracy locus

Dw :=
{
φ ∈ Hom(F,E) | rank (φp,q)⩽ rank (wp,q) for all 1 ⩽ p,q⩽ n

}
,

where φp,q is the composition of maps Fq → F
φ−→ E → Ep and wp×q is the upper-left submatrix of

size p×q of the permutation matrix of w. Under the identification Hom(F,E) ∼= Matn,n, we say that
Dw is the matrix Schubert variety of w.

Choose a basis {f1, . . . ,fn} of F such that {f1, . . . ,fi} is a basis of Fi for all 1 ⩽ i ⩽ n. Let F̃• be the
opposite flag

F̃1 ⊂ ·· · ⊂ F̃n where F̃i = ⟨fn−i+1, . . . ,fn⟩.

For a given permutation w ∈ Sn, we consider the degeneracy locus

Dw :=
{
φ ∈ Hom(F,E) | rank (φp,q)⩽ rank (wp,q) for all 1 ⩽ p,q⩽ n

}
,

where φp,q is the composition of maps F̃q → F
φ−→ E→ Ep and wp×q is the upper-right submatrix of

size p×q of the permutation matrix of w. Under the identification Hom(F,E) ∼= Matn,n, we say that
Dw is the opposite matrix Schubert variety of w.

A result of fundamental importance for us is the following geometric interpretation of double Schubert
polynomials.
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Theorem 5.1 ([FR03, KM05, AF24]). The equivariant class [Dw]T of the matrix Schubert variety Dw in
the cohomology ring H•

T (Matn,n) ∼= Z[t1, . . . ,tn,s1, . . . ,sn] is given by the double Schubert polynomial
Sw(t,s).

The next lemma expresses the equivariant class of the degeneracy locus Dw.

Lemma 5.2. The equivariant class [Dw]T ∈ H•
T (Matn,n) of Dw is given by the double Schubert poly-

nomial
Sw0w(t1, . . . ,tn,sn, . . . ,s1)

of w0w with a reverse ordering of the variables s1, . . . ,sn.

Proof. Let α : F→ F be the involution given by setting α(fi) = fn+1−i. To simplify notation, let M =

Hom(F,E). Let η : T → T be the involution given by η(g1, . . . ,gn,h1, . . . ,hn) = (g1, . . . ,gn,hn, . . . ,h1).
Then the induced involution f : M→M,φ 7→φ◦α is an equivariant map with respect to η because

f((g,h) ·φ) = η(g,h) · f(φ)

for all φ ∈M and (g,h) ∈ T . Then the induced pullback homomorphism is given by

f∗ : H•
T (M) = Z[t,s] → H•

T (M) = Z[t,s], ti 7→ ti and sj 7→ sn+1−j

(see [AF24, Exercise 3.2.3]). Let Em = (Cm \ 0)n× (Cm \ 0)n. Then Hi
T (M) = Hi(Em×T M) for

i < 2m− 1 and the pullback map f∗ can be constructed by taking the pullback in (usual) cohomology
along the equivariant map

Em×T M
(γ,f)−−−→ Em×T M

where γ : Em → Em is the involution given by γ(u1, . . . ,un,v1, . . . ,vn) = (u1, . . . ,un,vn, . . . ,v1) for all
(u1, . . . ,un,v1, . . . ,vn) ∈ Em (see [AF24, Exercise 3.2.1]). Since Em×T M is smooth, it follows that

f∗
([

Dw0w

]T)
=
[
f−1(Dw0w)

]T
=
[
Dw

]T
(see, e.g., [AF24, Proposition A.3.2], [Ful97, §B.3]). The result of the lemma now follows by invoking
Theorem 5.1. □

We are now ready to introduce the two main objects of this section.

Definition 5.3. For a pair of permutations (w,u) in Sn, we have:

(i) Dw
u :=Du∩Dw is the matrix Richardson variety.

(ii) Rw/u(t,s) := Su(t,s)Sw0w(t,s ′) is the double Richardson polynomial, where s ′ = (sn, . . . ,s1)

denotes the reverse of s = (s1, . . . ,sn).

We point out that the matrix Richardson variety Dw
u is a reduced and irreducible T -subvariety of

Matn,n. We have that Dw
u is nonempty if and only if w⩾u in the Bruhat order, and when it is nonempty,

it has dimension dim(Dw
u ) = ℓ(w)− ℓ(u). For details on Richardson varieties, the reader is referred to,

e.g., [Ric92, Bri05, Spe23].
Our main result in this section is the following theorem.

Theorem 5.4. For two permutations u,w ∈ Sn with w ⩾ u in Bruhat order, the following statements
hold:
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(i) The double Richardson polynomial Rw/u(t,s) represents the equivariant class of the matrix Richard-
son variety Dw

u in H•
T (Matn,n).

(ii) The (sign-changed) double Richardson polynomial Rw/u(t,−s) is a covolume polynomial.

Proof. (i) We have the equality [Dw
u ]T = [Du ∩Dw]T = [Du]

T · [Dw]T in H•
T (Matn,n). Therefore

Lemma 5.2 and Theorem 5.1 imply that Su(t,s)Sw0w(t,s ′) = Rw/u(t,s) represents the equivariant
class of the matrix Richardson variety Dw

u .
(ii) By utilizing part (i) and Corollary 4.6, it follows that Rw/u(t,−s) is a covolume polynomial. □

The double Richardson polynomial specializes to many polynomials of interest:

(i) Rw0/u(t,s) = Su(t,s) is the double Schubert polynomial.
(ii) Rw0/u(t,0) = Su(t,0) = Su(t) is the ordinary Schubert polynomial.

(iii) We say that Rw/u(t) = Rw/u(t,0) is the (ordinary) Richardson polynomial.

The next proposition shows that dually Lorentzian polynomials are discretely log-concave.

Proposition 5.5. If h=
∑

nantn is a dually Lorentzian polynomial, we have that

a2
n ⩾ an+ei−ejan−ei+ej .

Proof. Since N
(
tmh(t−1

1 , . . . ,t−1
p )
)
=
∑

n
an

(m−n)! t
m−n is Lorentzian for some m ∈ Np large enough, by

[BH20, Proposition 4.4] we get the inequality in the statement. □

The following remark states that the truncation of a dually Lorentzian polynomial is dually Lorentzian.
This result also follows from [RSW23, §3], but here we give a short self-contained proof.

Remark 5.6. Let P(t) =
∑

nantn be a dually Lorentzian polynomial. Let w = (w1, . . . ,wn)∈ Np. Then
the truncation

P ′(t) =
∑
n⩽w

antn

is dually Lorentzian.

Proof. Take m ∈ Np large enough such that w ⩽ m and

Q(t) = N
(
tmP(t−1

1 , . . . ,t−1
p )
)
=

∑
n

an

(m−n)!
tm−n

is a Lorentzian polynomial. Then

∂m1−w1
t1

· · ·∂mp−wp

tp
Q(t) =

∑
n⩽w

an

(w−n)!
tw−n

is also Lorentzian, and consequently ∑
n⩽w

antn+m−w = tm−wP ′(t)

is dually Lorentzian. Finally, Remark 2.8 implies that P ′(t) is dually Lorentzian. □

We now obtain some consequences for certain polynomials of interest in algebraic combinatorics.

Corollary 5.7. The following polynomials have M-convex support and are discretely log-concave:

(i) (sign-changed) Double Richardson polynomials Rw/u(t,−s).
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(ii) Richardson polynomials Rw/u(t).
(iii) (sign-changed) Double Schubert polynomials Su(t,−s).
(iv) Schubert polynomials Su(t).
(v) Any truncation of the above polynomials.

Proof. By Theorem 5.4 and Remark 5.6, these polynomials and their truncations are dually Lorentzian.
Since all these polynomials are dually Lorentzian and Lorentzian polynomials have M-convex support,

[Sch03, §44.6f] implies that the support of all these polynomials is M-convex (also, see [Alu24, Corollary
2.12]). The discrete log-concavity statement follows from Proposition 5.5. □

We now compare the Richardson polynomial Rw/u(t) with the skew Schubert polynomial of Lenart
and Sottile [LS03] (also, see [WY14, Remark 2.16]).

Remark 5.8. Let w⩾u be two permutations in Sn. Lenart and Sottile [LS03] defined the skew Schubert
polynomial Sw/u as the polynomial representative in normal form of the class of the Richardson variety
Xw
u = Xu∩Xw in the cohomology ring H•(Fℓn) of the full flag variety Fℓn. The Borel presentation

H•(Fℓn) =
Z[t1, . . . ,tn]

(e1(t1, . . . ,tn), . . . ,en(t1, . . . ,tn))

(where ei(t1, . . . ,tn) is the i-th elementary symmetric polynomial) yields a Z-basis given by the mono-
mials ta1

1 · · ·tan
n with ai ⩽ n− i. We say that a polynomial representative is in normal form if it can

be written as a Z-linear combination of this distinguished monomial basis. Let n = 4 and consider the
permutations w= 3412 > 2143 = u. The Richardson polynomial is given by

R3412/2143(t) = S2143(t)2 = t4
1 +2t3

1t2 + t2
1t

2
2 +2t3

1t3 +2t2
1t2t3 + t2

1t
2
3.

However, the skew Schubert polynomial (the polynomial representative in normal form) is given by

S3412/2143(t) = t3
1t2 + t3

1t3 + t2
1t2t3.

Due to Corollary 5.7, if the skew Schubert polynomial Sw/u(t) is a truncation of the Richardson
polynomial Rw/u(t), then Sw/u(t) is a dually Lorentzian polynomial. However, as in Remark 5.8,
Sw/u(t) may not coincide with a truncation of Rw/u(t). Thus we should ask the question below.

Question 5.9. Let w⩾ u be two permutations in Sn. We ask the following:

(a) Is the support of Sw/u(t) an M-convex set?
(b) Is Sw/u(t) discretely log-concave?
(c) Is Sw/u(t) a dually Lorentzian polynomial?
(d) Is Sw/u(t) a Lorentzian polynomial?

6. MACAULAY DUAL GENERATORS OF COHOMOLOGY RINGS

In this section, we study the Macaulay dual generators of cohomology rings of smooth complex al-
gebraic varieties. We prove that under certain positivity assumptions the Macaulay dual generators are
denormalized Lorentzian polynomials.
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6.1. Gorenstein algebras over a base ring. Before presenting our results on cohomology rings, which
is our main interest, we develop basic ideas regarding the notion of Gorenstein algebras over a base ring.
(These developments are probably known to the experts but we could not find a suitable reference for
us.) For details on Gorenstein rings and duality results, the reader is referred to [Eis95, Chapter 21],
[BH98, Chapter 3]. Throughout this subsection we use the following setup.

Setup 6.1. Let A be a Noetherian ring (always assumed to be commutative and with identity) and R be
a positively graded finitely generated algebra over R0 = A. Choose a positively graded polynomial ring
S=A[x1, . . . ,xn] with a graded surjection S↠ R and write R ∼= S/I for some homogeneous ideal I⊂ S.
Let m := (x1, . . . ,xn)⊂ S be the graded irrelevant ideal. Let δi := deg(xi)> 0 and δ := δ1+ · · ·+δn. For
any p ∈ Spec(A), we denote by κ(p) := Ap/pAp the residue field at p and we set S(p) := S⊗A κ(p) ∼=

κ(p)[x1, . . . ,xn] and R(p) := R⊗A κ(p).

We are interested in the following relative notion of Gorenstein.

Definition 6.2. We say that R is a Gorenstein algebra over A if the natural morphism f : Spec(R) →
Spec(A) is a Gorenstein morphism (see [Sta24, Tag 0C02]). This means that R is A-flat and the fiber
R(p) = R⊗A κ(p) is a Gorenstein ring for all p ∈ Spec(A). We also say that R is an Artinian Gorenstein
algebra over A if f : Spec(R)→ Spec(A) is a finite Gorenstein morphism.

For a graded S-module M, we denote the A-relative graded Matlis dual by

M∨A = ∗HomA(M,A) :=
⊕
ν∈Z

HomA (M−ν,A) .

Remark 6.3. Let L,M,N be finitely generated graded R-modules that are A-flat. Then:

(i) For all ν ∈ Z, the graded part Mν is a finitely generated flat A-module, and thus A-projective.
(ii)

(
M∨A

)∨A ∼=M.
(iii) AnnR

(
M∨A

)
= AnnR(M).

(iv) If 0 → L→M→N→ 0 is a short exact sequence, then 0 →N∨A →M∨A → L∨A → 0 is also
exact.

Remark 6.4. All the fibers R(p) = R⊗A κ(p) of f : Spec(R) → Spec(A) have the same dimension in
either of the following two cases:

(i) f is a finite morphism.
(ii) f is flat and Spec(A) is connected (e.g., A is a domain).

Proof. (i) In this case it is clear that all the fibers R(p) have Krull dimension 0.
(ii) Notice that each graded part Rν is a locally-free A-module of constant rank (see, e.g., [Sta24, Tag

00NX]). Thus the Hilbert function of the graded κ(p)-algebra R(p) is the same for all p ∈ Spec(A). □

Remark 6.5. Let M be a finitely generated R-module. Then M= 0 if and only if M⊗A κ(p) = 0 for all
p ∈ Spec(A).

Remark 6.6. A Cohen–Macaulay ring S with a canonical module ωS is Gorenstein if and only if ωS is
generated locally by one element (i.e., ωSP

∼=ωS⊗SSP is generated by one element for all P∈ Spec(S)).

The next proposition is similar to [CR23, Lemma 2.10].

https://stacks.math.columbia.edu/tag/0C02
https://stacks.math.columbia.edu/tag/00NX
https://stacks.math.columbia.edu/tag/00NX
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Proposition 6.7. Assume that f : Spec(R)→ Spec(A) is flat and that either Spec(A) is connected or f is
finite. Let e be the common dimension of the fibers of f (see Remark 6.4). Then R is Gorenstein over A
if and only if the following two conditions are satisfied:

(a) ExtiS(R,S) = 0 for all 0 ⩽ i⩽ n such that i ̸= n−e.
(b) Extn−e

S (R,S) is A-flat and it is generated locally by one element as an R-module.

Proof. Here we use the property of exchange for local Ext modules (see [LK79, Theorem A.5], [AK80,
Theorem 1.9]). For any p ∈ Spec(A), consider the natural base change maps

γi
p : ExtiS(R,S)⊗A κ(p) → ExtiS(p)(R(p),S(p)).

We have the following two important properties:

(i) If γi
p is surjective, then it is an isomorphism.

(ii) If γi
p is surjective, then γi−1

p is surjective if and only if ExtiS(R,S)⊗AAp is Ap-flat.

For all i>n, since each γi
p is surjective by Hilbert’s syzygy theorem, we obtain the vanishing ExtiS(R,S)=

0 (see Remark 6.5). For all p ∈ Spec(A), recall that the fiber R(p) is a Cohen–Macaulay ring if and only
if ExtiS(p)(R(p),S(p)) = 0 for all i ̸= n−e (this follows for instance by the local duality theorem).

Let i > n− e. If each γi+1
p is surjective and Exti+1

S (R,S) = 0, it follows that γi
p is surjective, and

this implies that ExtiS(R,S) = 0 if and only if ExtiS(p)(R(p),S(p)) = 0 for all p ∈ Spec(A). Hence, by
descending induction on i, we obtain ExtiS(R,S) = 0 for all i > n−e if and only if ExtiS(p)(R(p),S(p)) =
0 for all i > n−e and p ∈ Spec(A).

So we assume that ExtiS(R,S) = 0 for all i > n−e (and, equivalently, that ExtiS(p)(R(p),S(p)) = 0 for
all i > n−e and p ∈ Spec(A)).

Since each γn−e+1
p is surjective and Extn−e+1

S (R,S) = 0, it follows that each γn−e
p is surjective. In

turn, this implies that γn−e−1
p is surjective for all p ∈ Spec(A) if and only if Extn−e

S (R,S) is A-flat.
Similarly, by descending induction on i, we can show that ExtiS(p)(R(p),S(p)) = 0 for all i < n−e and
p ∈ Spec(A) if and only if ExtiS(R,S) = 0 for all i < n−e and Extn−e

S (R,S) is A-flat.
Therefore, in our current setting, we have shown that f : Spec(R) → Spec(A) is a Cohen–Macaulay

morphism (see [Sta24, Tag 045Q]) if and only if ExtiS(R,S) = 0 for all 0 ⩽ i ⩽ n with i ̸= n− e and
Extn−e

S (R,S) is A-flat.
Let M=Extn−e

S (R,S). To conclude the proof, we may assume that f is a Cohen–Macaulay morphism,
and we need to show that M can be generated locally by one element if and only if M⊗A κ(p) ∼=

Extn−e
S(p)(R(p),S(p)) can be generated by one element for all p∈ Spec(A). This can be proved using basic

properties of Fitting ideals (see [Eis95, §20.2]). Indeed, the claim follows by [Eis95, Proposition 20.6]
because Fitt1(M) = R if and only if Fitt1(M⊗A κ(p)) = (Fitt1(M))R(p) = R(p) for all p ∈ Spec(A)

(again, see Remark 6.5). So the proof is complete. □

Motivated by the above proposition, when R is Gorenstein over A and e is the common dimension of
the fibers, we say that

ωR/A := Extn−e
S

(
R,S(−δ)

)
is a relative canonical module of R over A.

Assume that R is a finitely generated A-module. Let d > 0 be a positive integer and ρ : R→ A(−d)

be a graded A-linear map (following tradition we call this map an orientation). We say that R satisfies

https://stacks.math.columbia.edu/tag/045Q
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Poincaré duality with respect to the orientation ρ if

R⊗A R → A(−d), r1 ⊗ r2 7→ ρ(r1r2)

is a perfect pairing. This means that the pairing induces a graded isomorphism R ∼= ∗HomA(R,A)(−d)

of R-modules. In particular, we have perfect pairings Ri⊗ARd−i →A for all 0 ⩽ i⩽ d. We also denote
by

ρ : Rd

∼=−→A

the induced isomorphism. Since we are assuming that R is a finitely generated A-module, we actually
have that ∗HomA(R,A) coincides with HomA(R,A) (see [BH98, Exercise 1.5.19]), but we prefer the
notation ∗HomA(R,A) to stress our interest in the graded parts of R.

Remark 6.8. By the Hom-tensor adjunction, we have the isomorphism

HomR (R,∗HomA(R,A(−d))) ∼= ∗HomA (R⊗A R,A(−d)) .

Thus having a perfect pairing R⊗A R→A(−d) is the same as having R ∼= ∗HomA(R,A)(−d).

We consider the inverse polynomial ring T = A[y1, . . . ,yn] where yi is identified with x−1
i . The

S-module structure of T is given by setting that

xα1
1 · · ·xαn

n · yβ1
1 · · ·yβn

n =

y
β1−α1
1 · · ·yβn−αn

n if βi ⩾ αi for all 1 ⩽ i⩽ n

0 otherwise.

Then T is a negatively graded polynomial ring with deg(yi) = −δi. We have the natural isomorphisms

T ∼= ∗HomA(S,A) ∼= Hn
m

(
S
)
(−δ)

of graded S-modules. Recall the basic computation Hn
m(S)

∼= 1
x1...xn

A[x−1
1 , . . . ,x−1

n ].
The following theorem extends well-known results about Artinian Gorenstein algebras (over a field)

to our current relative setting over a Noetherian base ring.

Theorem 6.9. Assume Setup 6.1 and that f : Spec(R) → Spec(A) is a finite flat morphism and that R
satisfies Poincaré duality with respect to an orientation ρ : R→ A(−d). Then the following statements
hold:

(i) R is Artinian Gorenstein over A.
(ii) We have the isomorphisms ωR/A = ExtnS (R,S(−δ)) ∼= ∗HomA(R,A) ∼= R(d).

(iii) Consider the inverse polynomial

GR(y1, . . . ,yn) =
∑

α1δ1+···+αnδn=d

ρ
(
xα1

1 · · ·xαn
n

)
yα1

1 · · ·yαn
n ∈ T =A[y1, . . . ,yn].

Then the presenting ideal of R= S/I is given as the annihilator of GR:

I = {g ∈ S | g ·GR = 0}.

Proof. Since R = H0
m(R) is A-flat and Hi

m(R) = 0 for i ⩾ 1, the generic version of the local duality
theorem given in [CR23, Theorem A] yields the isomorphisms Extn−i

S (R,S(−δ)) ∼= ∗HomA(Hi
m(R),A)

for all i. Therefore, R is Gorenstein over A by Proposition 6.7 and we have the isomorphisms ωR/A =

ExtnS (R,S(−δ)) ∼= ∗HomA(R,A) ∼= R(d). So the proofs of part (i) and (ii) are complete.
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Let E= I⊥A = {G∈ T | g ·G= 0 for all g ∈ I} be the (relative) inverse system of I. We have the natural
isomorphisms

E ∼= HomS

(
R,T
)

∼= HomS

(
R,∗HomA(S,A)

)
∼= ∗HomA(R,A) = R∨A .

The isomorphism E ∼= R∨A can be obtained by dualizing the short exact sequence 0 → I→ S→ R→ 0
and writing

0 → E ∼= R∨A → T ∼= S∨A → T/E ∼= I∨A → 0

(see Remark 6.3). By part (ii), there is an inverse polynomial G ∈ T = A[y1, . . . ,yn] of degree −d that
generates E as an R-module. Then the dual short exact sequence 0 → I→ S→ E∨A → 0 shows that

I = {g ∈ S | g ·G= 0}.

To conclude the proof, it suffices to show that GR generates the A-module E−d. By construction, for
any homogeneous polynomial g ∈ Sd, we have that

g ·GR = ρ(g) ,

where g denotes the class of g ∈ Sd in Rd = Sd/Id. This implies that under the isomorphism E−d
∼=

HomA(Rd,A), the inverse polynomial GR ∈ E−d corresponds to the isomorphism ρ ∈ HomA(Rd,A).
On the other hand, under the isomorphism HomA(Rd,A) ∼=A, the isomorphism ρ should correspond to
a unit in A. This shows that GR is a generator of E−d, and so the proof of the theorem is complete. □

Definition 6.10. Following standard notation, we say that the inverse polynomial GR ∈ T =A[y1, . . . ,yn]

presented in Theorem 6.9 is the Macaulay dual generator of R over A.

It is well-known that, over a field k, an Artinian graded k-algebra is Gorenstein if and only if it is a
Poincaré duality algebra (see, e.g., [HMM+13, Theorem 2.79]). The following simple example shows
that, over Noetherian base rings, we may not have the converse of Theorem 6.9.

Example 6.11. Let k be a field and consider the reduced k-algebra A = k[t]/(t(t−1)). Consider the
standard graded A-algebra

R =
A[x,y](

tx, (t−1)y, x2, xy, (x,y)3
) .

Since we have the natural isomorphism R ∼=A⊕ A
(t)x⊕

A
(t−1)y⊕

A
(t−1)y

2, it follows that R is A-flat. Let
p1 = (t)⊂A and p2 = (t−1)⊂A be the two points of Spec(A). Then the two fibers

R(p1) ∼=
k[x]
(x2)

and R(p2) ∼=
k[y]
(y3)

are Artinian Gorenstein algebras over k = κ(p1) = κ(p2). Therefore, R is Artinian Gorenstein over A.
Each of the fibers of R are Poincaré duality algebras, but we do not have a global Poincaré duality of R
over A (as we introduced it). Indeed, R cannot have a Poincaré duality over A because, for instance, the
top nonvanishing graded part R2 ∼= A

(t−1)y
2 is not isomorphic to A.

The next proposition shows that we get the converse of Theorem 6.9 when the base ring A satisfies a
Quillen–Suslin type of theorem (i.e., every finitely generated projective module is free).

Proposition 6.12. Assume Setup 6.1 and one of the following conditions:
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(a) A is a principal ideal domain (e.g., A= Z).
(b) A is a polynomial ring over a field.
(c) Or, more generally, every finitely generated projective A-module is A-free.

Then, R is Artinian Gorenstein over A if and only if R satisfies a Poincaré duality over A.

Proof. We only need to show the converse of Theorem 6.9. Thus we assume that R is Artinian Goren-
stein over A and that every finitely generated projective A-module is A-free. The latter condition is
satisfied in the case of PIDs and polynomial rings over a field (see, e.g., [Lam06]). Let d be the top
nonvanishing graded part of R. Due to our assumptions, Rd

∼= A and R(p) = R⊗A κ(p) is an Ar-
tinian Gorenstein algebra for all p ∈ Spec(A). Consequently, for all p ∈ Spec(A), the canonical module
ωR(p) =

∗Homκ(p) (R(p),κ(p)) ∼= ∗HomA(R,A)⊗A κ(p) of R(p) is generated by its graded part of de-
gree −d. This implies that ∗HomA(R,A) is generated by its graded part of degree −d (see Remark 6.5),
and so by choosing a basis generator of the graded part HomA(Rd,A) of degree −d, we obtain an iso-

morphism (R/a)(d)
∼=−→ ∗HomA(R,A) for some homogeneous ideal a ⊂ R. On the other hand, since

AnnR (∗HomA(R,A)) = 0 (see Remark 6.3), we obtain the isomorphism R(d)
∼=−→ ∗HomA(R,A). The

result of the proposition now follows from Remark 6.8. □

6.2. Cohomology rings as Artinian Gorenstein algebras over Z. In this subsection, we apply our
developments in §6.1 to cohomology rings. Our main result in this direction is the following theorem.

Theorem 6.13. Let X be a d-dimensional smooth complex algebraic variety. Suppose that the cohomol-
ogy ring R=

⊕d
i=0 H2i(X,Z) is a flat Z-algebra (i.e., it is Z-torsion-free). Let ρ : Rd = H2d(X,Z)→ Z

be the natural degree map. Choose a graded presentation R ∼= S/I where S = Z[x1, . . . ,xn], δi =

deg(xi) > 0, and I ⊂ S is a homogeneous ideal. Let δ = δ1 + · · ·+ δn. Then the following statements
hold:

(i) R is Artinian Gorenstein over Z.
(ii) We have the isomorphisms ωR/Z = ExtnS (R,S(−δ)) ∼= ∗HomZ(R,Z) ∼= R(d).

(iii) Consider the inverse polynomial ring T = Z[y1, . . . ,yn] with the identification yi = x−1
i . The ideal

I⊂ S is given as the annihilator

I = {g ∈ S | g ·GR = 0}

of the inverse polynomial

GR(y1, . . . ,yn) =
∑

α1δ1+···+αnδn=d

ρ
(
xα1

1 · · ·xαn
n

)
yα1

1 · · ·yαn
n ∈ T = Z[y1, . . . ,yn].

(iv) Assume that X is complete and that each xi is equal to the first Chern class c1(Li) of a nef line
bundle Li on X. Then the normalization

N(GR) ∈ R[y1, . . . ,yn]

of GR is a Lorentzian polynomial.

Proof. Parts (i), (ii), and (iii) follow from Theorem 6.9 because H•(X,Z) satisfies Poincaré duality and
we are assuming it is Z-torsion-free.
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We now concentrate on proving part (iv). Notice that the normalization

N(GR) =
1
d!

∫ (
x1y1 + · · ·+xnyn

)d∩ [X] ∈ R[y1, . . . ,yn]

of GR is the volume polynomial of x1, . . . ,xn divided by d!. By using Chow’s lemma, we can find a
proper birational surjective morphism f : X ′ → X where X ′ is a projective variety. Let L ′

i = f∗(Li) and
x ′
i = c1(L

′
i). The projection formula yields the equality

N(GR) =
1
d!

∫ (
x ′

1y1 + · · ·+x ′
nyn

)d∩ [X ′] ∈ R[y1, . . . ,yn].

Since each L ′
i is nef on X ′, we have that N(GR) is a Lorentzian polynomial due to [BH20, Theorem

4.6]. □

We close this subsection with some specific computations.

Example 6.14 (The flag variety Fℓ3). By considering the Borel presentation

R = H•(Fℓ3,Z) =
Z[x1,x2,x3]

(x1 +x2 +x3, x1x2 +x1x3 +x2x3, x1x2x3)

of the flag variety Fℓ3, we obtain the Macaulay dual generator

GR(y1,y2,y3) = −y2
1y2 +y2

1y3 +y1y
2
2 −y1y

2
3 −y2

2y3 +y2y
2
3.

We know that the elements x̂1 = x1, x̂2 = x1 +x2 and x̂3 = x1 +x2 +x3 correspond to nef line bundles
on Fℓ3 (see, e.g., [Ful97, Chapter 10]). By considering the following alternative presentation

R = H•(Fℓ3,Z) =
Z[x̂1, x̂2, x̂3](

x̂3, −x̂2
1 + x̂1x̂2 − x̂2

2 + x̂2x̂3, x̂2
1x̂2 − x̂1x̂

2
2 − x̂2

1x̂3 + x̂1x̂2x̂3
) ,

we obtain the following Macaulay dual generator

GR(ŷ1, ŷ2, ŷ3) = ŷ2
1ŷ2 + ŷ1ŷ

2
2

whose normalization is a Lorentzian polynomial (as predicted by Theorem 6.13(iv)).

Example 6.15 (The Grassmannian Gr(2,4)). The cohomology ring of the Grassmannian Gr(2,4) is
given by

R = H•(Gr(2,4),Z) =
Z[x1,x2](

x3
1 −2x1x2, x2

1x2 −x2
2

) ,

where xi is the i-th Chern class ci(S) of the universal subbundle S on Gr(2,4). Then the Macaulay dual
generator is given by

GR(y1,y2) = 2y4
1 +y2

1y2 +y2
2.

Finally, we provide a characteristic-free (over Z) extension of the celebrated result of Khovanskii and
Pukhlikov [KP92] showing that the cohomology ring (over Q) of certain toric varieties can be expressed
in terms of differential operators that annihilate the volume polynomial. We follow the notations in
[CLS11].

We briefly recall the notion of mixed volume (for more details, the reader is referred to [Ewa96,
Chapter IV], [CLO05, Chapter 7]). Let P1, . . . ,Pn be lattice polytopes in Zd and Vol(Pi) denote the
Euclidean volume of Pi, where the unit hypercube has volume 1. The volume of the Minkowski sum of
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polytopes Vol(y1P1 + · · ·+ynPn) is a homogeneous polynomial of degree d, and we write

Vol(y1P1 + · · ·+ynPn) =
∑

|α|=d

d!
α!

MVα(P1, . . . ,Pn)y
α1
1 · · ·yαn

n

where MVα(P1, . . . ,Pn) is called the mixed volume of (P1, . . . ,Pn) of type α.
Let XΣ be a smooth complete toric variety and write d= dim(XΣ), n= |Σ(1)|, and m= rank(Pic(XΣ)).

Let ρ1, . . . ,ρn be the one-dimensional rays in Σ(1). Let Di be the divisor on XΣ associated to ρi. We
have the following isomorphism

Z[x1, . . . ,xn]/(I+J)
∼=−→ H•(XΣ,Z), xi 7→Di,

where I=
(
xi1 , . . . ,xis | ij are distinct and ρi1 + · · ·+ρis is not a cone of Σ

)
and J is the ideal generated

by linear forms
∑n

i=1⟨m,ui⟩xi for all m ∈ M in the dual lattice M. Moreover, the cohomology ring
H•(XΣ,Z) is Z-torsion-free. This explicit description of H•(XΣ,Z) was obtained by Jurkiewicz [Jur80]
and Danilov [Dan78]. The volume polynomial of XΣ is defined as

V(y1, . . . ,yn) :=

∫
XΣ

(D1y1 + · · ·+Dnyn)
d .

Assume that the classes of the divisors D1, . . . ,Dm on XΣ give a basis of Pic(XΣ). Then the reduced
volume polynomial of XΣ is given by

V(y1, . . . ,ym) :=

∫
XΣ

(
D1y1 + · · ·+Dmym

)d
.

Below we have our extension of the aforementioned result of Khovanskii and Pukhlikov [KP92].

Corollary 6.16. Let R =
⊕d

i=0 H2i (XΣ,Z). Under the Macaulay inverse system notation of Theo-
rem 6.13, the following statements hold:

(i) There are isomorphisms of Z-algebras

R ∼= Z[x1, . . . ,xn]/I ∼= Z[x1, . . . ,xm]/J

where
I =

{
g ∈ Z[x1, . . . ,xn] | g ·N−1 (V(y1, . . . ,yn)) = 0

}
= I+J

and
J =

{
g ∈ Z[x1, . . . ,xm] | g ·N−1 (V(y1, . . . ,ym)

)
= 0

}
.

Here N−1 denotes the inverse of the normalization operator.
(ii) If each Di is nef and Pi = PDi

is the polytope associated to Di, then

GR(y1, . . . ,yn) =
∑

α1+···+αn=d

MVα(P1, . . . ,Pn)y
α1
1 · · ·yαn

n .

Proof. (i) We concentrate on the isomorphism R ∼= Z[x1, . . . ,xn]/I. From Theorem 6.13(iii), we have
I= {g ∈ Z[x1, . . . ,xn] | g ·GR = 0} and that the Macaulay dual generator is given by

GR(y1, . . . ,yn) =
∑

α1+···+αn=d

(∫
XΣ

Dα1
1 · · ·Dαn

n

)
yα1

1 · · ·yαn
n .
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Then the equality I =
{
g ∈ Z[x1, . . . ,xn] | g ·N−1 (V(y1, . . . ,yn)) = 0

}
follows by noticing that

Vol(y1, . . . ,yn) = d!N(GR(y1, . . . ,yn)) .

The isomorphism R ∼= Z[x1, . . . ,xm]/J follows verbatim.
(ii) From [CLS11, Theorem 13.4.3], we obtain the equality

V(y1, . . . ,yn) = Vol(y1P1 + · · ·+ynPn).

By comparing coefficients we get
∫
XΣ

Dα1
1 · · ·Dαn

n = MVα(P1, . . . ,Pn). Therefore, the equality

GR(y1, . . . ,yn) =
∑

α1+···+αn=d

MVα(P1, . . . ,Pn)y
α1
1 · · ·yαn

n

follows from Theorem 6.13(iii). □

Example 6.17 (The Hirzebruch surface Hr). Consider the Hirzebruch surface Hr and label the one di-
mensional rays in the fan as ρ1 = Cone(−e1+re2), ρ2 = Cone(e2), ρ3 = Cone(e1), and ρ4 = Cone(−e2).
The cohomology ring of Hr is given by

R = H•(Hr,Z) ∼=
Z[x1,x2,x3,x4]

(x1x3, x2x4, −x1 +x3, rx1 +x2 −x4)
.

The Macaulay dual generator is given by

GR(y1,y2,y3,y4) = −ry2
2 + ry2

4 +y1y2 +y2y3 +y3y4 +y1y4

and the volume polynomial is given by

V(y1,y2,y3,y4) = −ry2
2 + ry2

4 +2y1y2 +2y2y3 +2y3y4 +2y1y4 = 2!N(GR(y1,y2,y3,y4)).

Alternatively, the cohomology ring of Hr can be represented as

R = H•(Hr,Z) ∼=
Z[x3,x4]

(x2
3,−rx3x4 +x2

4)
.

The Macaulay dual generator is given by

GR(y3,y4) = ry2
4 +y3y4

and the reduced volume polynomial is given by

V(y3,y4) = ry2
4 +2y3y4 = 2!N(GR(y3,y4)).

Since Dρ3 and Dρ4 are both nef divisors in Hr [CLS11, Example 6.3.23], we have that V(y3,y4) is a
Lorentzian polynomial (as predicted by Theorem 6.13(iv)).
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