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ABSTRACT. We show that normalized Schur polynomials are strongly log-concave. As a conse-
quence, we obtain Okounkov’s log-concavity conjecture for Littlewood–Richardson coefficients in
the special case of Kostka numbers.

1. INTRODUCTION

Schur polynomials are the characters of finite-dimensional irreducible polynomial represen-
tations of the general linear group GLmpCq. Combinatorially, the Schur polynomial of a partition
λ in m variables is the generating function

sλpx1, . . . , xmq “
ÿ

T

xµpTq, xµpTq “ x
µ1pTq
1 ¨ ¨ ¨xµmpTqm ,

where the sum is over all Young tableaux T of shape λ with entries from rms, and

µipTq “ the number of i’s among the entries of T, for i “ 1, . . . ,m.

Collecting Young tableaux of the same weight together, we get

sλpx1, . . . , xmq “
ÿ

µ

Kλµx
µ,

whereKλµ is the Kostka number counting Young tableaux of given shape λ and weight µ [Kos82].
Correspondingly, the Schur module Vpλq, an irreducible representation of the general linear
group with highest weight λ, has the weight space decomposition

Vpλq “
à

µ

Vpλqµ with dim Vpλqµ “ Kλµ.

Schur polynomials were first studied by Cauchy [Cau15], who defined them as ratios of alter-
nants. The connection to the representation theory of GLmpCq was found by Schur [Sch01]. For
a gentle introduction to these remarkable polynomials, and for all undefined terms, we refer to
[Ful97].
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We prove several log-concavity properties of Schur polynomials. An operator that turns
generating functions into exponential generating functions will play an important role. This
linear operator, denoted N, is defined by the condition

Npxµq “
xµ

µ!
“
xµ1

1

µ1!
¨ ¨ ¨

xµmm
µm!

for all µ P Nm.

Recall that a partition is a weakly decreasing sequence of nonnegative integers.

Theorem 1 (Continuous). For any partition λ, the normalized Schur polynomial

Npsλpx1, . . . , xmqq “
ÿ

µ

Kλµ
xµ

µ!

is either identically zero or its logarithm is concave on the positive orthant Rmą0.

Let ei be the i-th standard unit vector in Nm. For µ P Zm and distinct i, j P rms, we set

µpi, jq “ µ` ei ´ ej .

We show that the sequence of weight multiplicities of Vpλqwe encounter is always log-concave
if we walk in the weight diagram along any root direction ei ´ ej .

Theorem 2 (Discrete). For any partition λ and any µ P Nm, we have

K2
λµ ě Kλµpi,jqKλµpj,iq for any i, j P rms.

For partitions ν, κ, λ, the Littlewood–Richardson coefficient cνκλ is given by the decomposition

Vpκq bVpλq »
à

ν

Vpνq‘c
ν
κλ .

When the skew shape ν{κ has at most one box in each column, cνκλ is the Kostka number Kλµ,
where µ “ ν ´ κ.1 Conversely, for any partition λ and any µ, we have

Kλµ “ cνκλ,

where ν and κ are the partitions given by νi “
řn
j“i µj and κi “

řn
j“i`1 µj . Thus Theorem 2

verifies a special case of Okounkov’s conjecture that the discrete function

pν, κ, λq ÞÝÑ log cνκλ

1The equality between the Littlewood–Richardson coefficient and the Kostka number follows from Pieri’s formula

hµ1 px1, . . . , xmq ¨ ¨ ¨hµm px1, . . . , xmq “
ÿ

λ

Kλµsλpx1, . . . , xmq,

where hµi is the µi-th complete symmetric function [Ful97, Section 6.1]. When ν{κ has at most one box in each column,
the left-hand side is the skew Schur function sν{κ, given by the Littlewood–Richardson rule

sν{κpx1, . . . , xmq “
ÿ

λ

cνκλsλpx1, . . . , xmq.
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is concave [Oko03, Conjecture 1].2

We point out that, for any fixed λ, the log-concavity of Kλµ along any direction is known to
hold asymptotically. By [Hec82], the Duistermaat–Heckman measure obtained from the orbit of λ
under SUm is a translate of the weak limit

lim
kÑ8

ř

µKkλµδ 1
kµ

ř

µKkλµ
,

where δ 1
kµ

is the point mass at 1
kµ. It follows from [Gra96] that, in this case, the density function

of the Duistermaat–Heckman measure is log-concave.3 We refer to [BGR04, Section 3] for an
exposition.

In [BH19], the authors introduce Lorentzian polynomials as a generalization of volume poly-
nomials in algebraic geometry and stable polynomials in optimization theory. See Section 2 for
a brief introduction. We show that normalized Schur polynomials are Lorentzian in the sense of
[BH19], and deduce Theorems 1 and 2 from the Lorentzian property.

Theorem 3. The normalized Schur polynomial Npsλpx1, . . . , xmqq is Lorentzian for any λ.

Using general properties of Lorentzian polynomials [BH19, Section 6], Theorem 3 can be
strengthened as follows.

Corollary 4. For any sequence of partitions λ1, . . . , λ` and any positive integers m1, . . . ,m`,

(1) the normalized product of Schur polynomials Np
ś`
k“1 sλkpx1, . . . , xmkqq is Lorentzian, and

(2) the product of normalized Schur polynomials
ś`
k“1 Npsλkpx1, . . . , xmkqq is Lorentzian.

We prove Theorem 3 in Section 2 in a more general context of Schubert polynomials, but the
main idea is simple enough to be outlined here. The volume polynomial of an irreducible complex
projective variety Y , with respect to a sequence of nef divisor classes4 H “ pH1, . . . ,Hmq, is the
homogeneous polynomial

volY,Hpx1, . . . , xmq “
1

dimY !

ż

Y

px1H1 ` ¨ ¨ ¨ ` xmHmq
dimY ,

where the intersection product of Y is used to expand the integrand. Volume polynomials are
prototypical examples of Lorentzian polynomials [BH19, Section 10]. To show that the normal-
ized Schur polynomial of λ is a volume polynomial, we suppose that the partition λ hasm parts,

2 The conjecture holds in the “classical limit” [Oko03, Section 3], but the general case is refuted in [CDW07]:

c
p4n,3n,2n,1nq
p3n,2n,1nqp2n,1n,1nq

“

´n` 2

2

¯

and c
p8n,6n,4n,2nq
p6n,4n,2nqp4n,2n,2nq

“

´n` 5

5

¯

for all n.

The same example shows that the log-concavity conjecture for parabolic Kostka numbers [Kir04, Conjecture 6.17] also fails.
3Let pM, ωq be a symplectic manifold of dimension 2n with an action of a torus T and a moment map M Ñ t˚.

The Duistermaat–Heckman measure is the push-forward of the Liouville measure
ş

ωn via the moment map. In this
generality, Karshon shows that the density function need not be log-concave [Kar96].

4A Cartier divisor on a complete variety Y is nef if it intersects every curve in Y nonnegatively. We refer to [Laz04]
for a comprehensive introduction.
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and choose a large integer ` to get a complementary pair of partitions

λ “ pλ1, λ2, . . . , λmq and κ “ p`, `, . . . , `q ´ pλm, λm´1, . . . , λ1q.

The Schur polynomials of the partitions λ and κ are related by the identity5

sκpx1, . . . , xmq “ x`1 ¨ ¨ ¨x
`
msλpx

´1
1 , . . . , x´1

m q.

Let X be the product of projective spaces pP`qm, and let Y be a subvariety of X whose funda-
mental class satisfies

rY s “ sκpH1, . . . ,Hmq X rXs, Hi “ c1pπ
˚
i Op1qq,

where πi is the i-th projection. The volume polynomial of Y with respect to H is

volY,Hpx1, . . . , xmq “
1

dimY !

ż

Y

px1H1 ` ¨ ¨ ¨ ` xnHmq
dimY

“
1

dimY !

ż

X

sκpH1, . . . ,Hmqpx1H1 ` ¨ ¨ ¨ ` xmHmq
dimY “ Npsλpx1, . . . , xmqq.

Such Y can be constructed from a sequence of generic global sections
Àm

i“1 π
˚
i Op1q as a degen-

eracy locus [Ful98, Example 14.3.2], completing the argument.

In Section 2, we introduce Lorentzian polynomials and prove the main results. In Section 3,
we present evidence for the ubiquity of Lorentzian polynomials through a series of results and
conjectures.

Acknowledgments. We are grateful to Dave Anderson, Alex Fink, Allen Knutson, Thomas
Lam, Ricky Liu, Alex Postnikov, Pavlo Pylyavskyy, Vic Reiner, Mark Shimozono, and Alex Yong
for fruitful discussions. We thank the Institute for Advanced Study for providing an excellent
environment for our collaboration.

2. NORMALIZED SCHUR POLYNOMIALS ARE LORENTZIAN

A subset J Ď Zn is M-convex6 if, for any index i P rns and any α P J and β P J whose i-th
coordinates satisfy αi ą βi, there is an index j P rns satisfying

αj ă βj and α´ ei ` ej P J and β ´ ej ` ei P J.

The notion of M-convexity forms the foundation of discrete convex analysis [Mur03]. The con-
vex hull of an M-convex set is a generalized permutohedron in the sense of [Pos09], and con-
versely, the set of integral points in an integral generalized permutohedron is an M-convex set
[Mur03, Theorem 1.9].

Lorentzian polynomials connect discrete convex analysis with many log-concavity phenom-
ena in combinatorics. See [AOGV18, ALOGV18a, ALOGV18b, BES19, BH18, BH19, EH19] for

5The dual of the Schur module Vpλq has highest weight p´λm, . . . ,´λ1q, see [FH91, Exercise 15.50].
6The letter M stands for matroids. When J Ď Nn consists of zero-one vectors, the M-convexity of J is the symmetric

basis exchange property of matroids [Whi86, Chapter 4].
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recent applications. Here we briefly summarize the relevant results, and refer to [BH19] for
details. We fix integers d and e “ d´ 2.

Definition 5. Let hpx1, . . . , xnq be a degree d homogeneous polynomial. We say that h is strictly
Lorentzian if all the coefficients of h are positive and

B

Bxi1
¨ ¨ ¨

B

Bxie
h has the signature p`,´, . . . ,´q for any i1, . . . , ie P rns.

We say that h is Lorentzian if it satisfies any one of the following equivalent conditions.

(1) All the coefficients of h are nonnegative, the support of h is M-convex,7 and

B

Bxi1
¨ ¨ ¨

B

Bxie
h has at most one positive eigenvalue for any i1, . . . , ie P rns.

(2) All the coefficients of h are nonnegative and, for any i1, i2, . . . P rns and any positive k,

the functions h and
B

Bxi1
¨ ¨ ¨

B

Bxik
h are either identically zero or log-concave on Rną0.

(3) The polynomial h is a limit of strictly Lorentzian polynomials.

For example, a bivariate polynomial
řd
k“0 akx

k
1x

d´k
2 with nonnegative coefficients is Lorentzian

if and only if the sequence a0, . . . , ad has no internal zeros8 and

a2
k

`

d
k

˘2 ě
ak´1
`

d
k´1

˘

ak`1
`

d
k`1

˘ for all 0 ă k ă d.

Polynomials satisfying the second condition of Definition 5, introduced by Gurvits in [Gur09],
are called strongly log-concave. See [BH19, Section 5] for a proof of the equivalence of the three
conditions in Definition 5.

We write Sn for the group of permutations of rns. The Schubert polynomial Swpx1, . . . , xnq for
w P Sn can be defined recursively as follows.

(1) If w “ w˝ is the longest permutation n n´ 1 ¨ ¨ ¨ 2 1, then

Swpx1, . . . , xnq “ xn´1
1 xn´2

2 ¨ ¨ ¨x1
n´1.

(2) If wpiq ą wpi` 1q for some i and si is the adjacent transposition pi i` 1q, then

Swsipx1, . . . , xnq “ BiSwpx1, . . . , xnq.

The symbol Bi stands for the i-th divided difference operator defined by the formula

BiSw “
Sw ´ siSw

xi ´ xi`1
,

7The support of a polynomial hpx1, . . . , xnq is the set of monomials appearing in h, viewed as a subset of Nn.
8The sequence a0, . . . , ad has no internal zeros if ak1ak3 ‰ 0 ùñ ak2 ‰ 0 for all 0 ď k1 ă k2 ă k3 ď d.
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where siSw is the polynomial obtained from Sw by interchanging xi and xi`1. The divided
difference operators satisfy the braid relations, and it follows that the Schubert polynomials are
well-defined [MS05, Exercise 15.3]. For any w P Sn, we define

S_w “ Npxn´1
1 ¨ ¨ ¨xn´1

n Swpx
´1
1 , . . . , x´1

n qq.

Theorem 6. The polynomial S_wpx1, . . . , xnq is Lorentzian for any w P Sn.

We conjecture that NpSwpx1, . . . , xnqq is Lorentzian for any w P Sn, see Section 3.2.

Proof. Recall that the volume polynomial of a projective variety Y , with respect to a sequence of
Cartier divisor classes H “ pH1, . . . ,Hnq, is the homogeneous polynomial

volY,Hpx1, . . . , xnq “
1

dimY !

ż

Y

px1H1 ` ¨ ¨ ¨ ` xnHnq
dimY .

By [BH19, Theorem 10.1], the volume polynomial is Lorentzian whenever Y is irreducible and
H1, . . . ,Hn are nef. We show that S_w is a volume polynomial for suitable Y “ Yw and H.

Let X be the product of projective spaces pPn´1qn. We write xi1, xi2, . . . , xin for the homoge-
neous coordinates of the i-th projective space, and write πi for the i-th projection. We consider
the map between the rank n vector bundles

Ψ :
n
à

i“1

OX ÝÑ
n
à

j“1

π˚j Op1q, Ψpxq “ pxijq1ďiďn,1ďjďn.

For p, q P rns, the induced map
Àp

i“1 OX Ñ
Àq

j“1 π
˚
j Op1qwill be denoted Ψpˆq . We set

Y “ Yw :“
!

x P X | rank Ψpˆqpxq ď rank wpˆq for all p and q
)

,

where wpˆq is the p ˆ q partial permutation matrix with ij-entry 1 for wpiq “ j. The locus Y is
defined by all minors of pxijq1ďiďp,1ďjďq of size one more than the rank of wpˆq for all p and q.

By [Ful92, Theorem 8.2], the fundamental class of Y in the Chow group of X is given by

rY s “ SwpH1, . . . ,Hnq X rXs, Hi “ c1pπ
˚
i Op1qq.

An alternative proof of the displayed formula, in a more refined setting, was obtained in [KM05]
through an explicit degeneration of Y . An important point for us is that Y is irreducible of
expected codimension deg Sw [Ful92]. For an elementary proof that the multi-homogeneous
ideal defining Y is prime, see [MS05, Section 16.4]. The volume polynomial of Y with respect to
H “ pH1, . . . ,Hnq is

volY,Hpx1, . . . , xnq “
1

dimY !

ż

Y

px1H1 ` ¨ ¨ ¨ ` xnHnq
dimY

“
1

dimY !

ż

X

SwpH1, . . . ,Hnqpx1H1 ` ¨ ¨ ¨ ` xnHnq
dimY “ S_wpx1, . . . , xnq.

The second equality is the projection formula, and the third equality follows from
ż

X

Hµ “

#

1 if µ “ pn´ 1, . . . , n´ 1q,
0 if µ ‰ pn´ 1, . . . , n´ 1q.
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Now the Lorentzian property of S_w can be deduced from [BH19, Theorem 10.1]. �

Lemma 7. For any µ P Nn and any polynomial f “ fpx1, . . . , xnq,

Npfq is Lorentzian if and only if Npxµfq is Lorentzian.

Proof. If a polynomial gpx1, . . . , xnq is Lorentzian, then so is its partial derivative

Bµg “
´

B

Bx1

¯µ1

¨ ¨ ¨

´

B

Bxn

¯µn
gpx1, . . . , xnq.

Therefore, the “if” direction follows from the equality of linear operators

Bµ ˝N ˝ xµ “ N.

The “only if” direction is a special case of [BH19, Corollary 6.8]. �

Proof of Theorem 3. As in the introduction, given a partition λ with m parts, we choose a large
integer ` and write κ for the partition complementary to λ in themˆ` rectangle. Choose another
large integer n, and let w be the unique element of Sn satisfying

κ “
`

wpmq ´m, . . . , wp1q ´ 1
˘

and wpmq ą wpm` 1q ă wpm` 2q ă ¨ ¨ ¨ ă wpnq.

The element w is the Grassmannian permutation in Sn with the Lehmer code

Lpwq “ pwp1q ´ 1, . . . , wpmq ´m, 0, . . . , 0q “ pκm, . . . , κ1, 0, . . . , 0q.

The Schubert polynomial of w satisfies

Swpx1, . . . , xnq “ sκpx1, . . . , xmq “ x`1 ¨ ¨ ¨x
`
msλpx

´1
1 , . . . , x´1

m q,

where the first equality is [Man01, Proposition 2.6.8] and the second equality is [FH91, Exercise
15.50]. By Theorem 6, we know that the polynomial S_w is Lorentzian, which is equal to

Npxn´1
1 ¨ ¨ ¨xn´1

n sκpx
´1
1 , . . . , x´1

m qq “ Npxµsλpx1, . . . , xmqq for some µ P Nn.

Therefore, by Lemma 7, the Lorentzian property of S_w implies that of Npsλpx1, . . . , xmqq. �

Proofs of Theorems 1 and 2. Since any nonzero Lorentzian polynomial is log-concave on the pos-
itive orthant, Theorem 1 follows from Theorem 3. For Theorem 2, we may suppose that

µ1 ` ¨ ¨ ¨ ` µm “ λ1 ` ¨ ¨ ¨ ` λm ě 2 and κ :“ µ´ ei ´ ej P Nm.

We consider the quadratic form with at most one positive eigenvalue

Bκ1

Bxκ1
1

¨ ¨ ¨
Bκm

Bxκmm
Npsλpx1, . . . , xmqq,

viewed as an mˆm symmetric matrix. Its 2ˆ 2 principal submatrix corresponding to i and j is
either identically zero or has exactly one positive eigenvalue, by Cauchy’s interlacing theorem.
The nonpositivity of the 2ˆ 2 principal minor gives the conclusion

K2
λµ ě Kλµpi,jqKλµpj,iq. �
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Proof of Corollary 4. The first part follows from Theorem 3 and [BH19, Corollary 6.8]. The second
part follows from Theorem 3 and [BH19, Corollary 5.5]. �

In general, if h is a Lorentzian polynomial, then its normalization Nphq is a Lorentzian poly-
nomial [BH19, Corollary 6.7]. We record here that Schur polynomials, before the normalization,
need not be Lorentzian.

Example 8. The Schur polynomial of the partition λ “ p2, 0q in two variables is

sλpx1, x2q “ x2
1 ` x1x2 ` x

2
2.

The quadratic form has eigenvalues 3
2 and 1

2 , and hence sλ is not Lorentzian.

A polynomial fpx1, . . . , xmq is stable if f has no zeros in the product of m open upper half
planes [Wag11]. Homogeneous stable polynomials with nonnegative coefficients are motivating
examples of Lorentzian polynomials [BH19, Proposition 2.2]. We record here that normalized
Schur polynomials, although Lorentzian, need not be stable.

Example 9. The normalized Schur polynomial of λ “ p3, 1, 1, 1, 1q in five variables is

Npsλpx1, . . . , x5qq “
1

12
x1x2x3x4x5

´

ÿ

1ďiăjď5

3xixj `
ÿ

1ďiď5

2x2
i

¯

.

By [Wag11, Lemma 2.4], if Npsλq is stable, then so is its univariate specialization

Npsλq|x2“x3“x4“x5“1 “
1

6
x1

´

x2
1 ` 6x1 ` 13

¯

.

However, the displayed cubic has a pair of nonreal zeros, and hence Npsλq is not stable.

3. UBIQUITY OF LORENTZIAN POLYNOMIALS

3.1. Multiplicities of highest weight modules. We point to [Hum08] for background on rep-
resentation theory of semisimple Lie algebras. Let Λ be the integral weight lattice of the Lie
algebra slmpCq, let $1, . . . , $m´1 be the fundamental weights, and let ρ be the sum of the fun-
damental weights. For λ P Λ, we write Vpλq for the irreducible slmpCq-module with highest
weight λ, and consider its decomposition into finite-dimensional weight spaces

Vpλq “
à

µ

Vpλqµ.

For µ P Λ and distinct i, j P rms, we write µpi, jq for the element µ` ei ´ ej P Λ.

Conjecture 10. For any λ P Λ and any µ P Λ, we have

pdim Vpλqµq
2 ě dim Vpλqµpi,jq dim Vpλqµpj,iq for any i, j P rms.

When λ is dominant, the dimension of the weight space Vpλqµ is the Kostka numberKλµ, and
Theorem 2 shows that Conjecture 10 holds in this case. When λ is antidominant [Hum08, Section
4.4], Vpλq is the Verma module Mpλq, the universal highest weight module of highest weight λ.
We note that Conjecture 10 holds in this case as well.
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Proposition 11. For any λ P Λ and any µ P Λ, we have

pdim Mpλqµq
2 ě dim Mpλqµpi,jq dim Mpλqµpj,iq for any i, j P rms.

One may deduce Proposition 11 from its stronger variant Proposition 13 below.

Alternative proof. The Poincaré–Birkhoff–Witt theorem shows that the dimensions of the weight
spaces are given by the Kostant partition function p:

dim Mpλqµ “ ppµ´ λq “ number of ways to write µ´ λ as a sum of negative roots.

Lidskij’s volume formula for flow polytopes shows that all Kostant partition function evalu-
ations are mixed volumes of Minkowski sums of polytopes [BV08]. The Alexandrov–Fenchel
inequality for mixed volumes [Sch14, Section 7.3] yields the desired log-concavity property. �

The diagram below shows some of the weight multiplicities of the irreducible sl4pCq-module
with highest weight ´2$1 ´ 3$2. We start from the highlighted vertex $1 ´ 6$2 ´ 3$3 and
walk along negative root directions in the hyperplane spanned by e2 ´ e1 and e3 ´ e2. In the
shown region, the sequence of weight multiplicities along any line is log-concave, as predicted
by Conjecture 10.

1

11

e3 − e1

e3 − e2

e2 − e1

12

12

12

10

13

15

16

16

10101010

14

18

21

23

14

17

19

20

1414

1818

2222

2526 8

8

8

8

7

5

9

666666

3 3 3 3 3 3 3

4

4

4

4

4

3

2

1111111

We note, however, that a naive analog of Conjecture 10 does not hold for symplectic Lie
algebras. In the weight diagram of the irreducible representation of sp4pCqwith highest weight
2$2 shown below, the weight multiplicities along the two diagonals of the square do not form
log-concave sequences.9

9 Note that the Newton polytope of any homogeneous strongly log-concave polynomial is necessarily a generalized
permutohedron of type A: Any edge of the Newton polytope should be parallel to ei ´ ej for some i and j.



10 JUNE HUH, JACOB P. MATHERNE, KAROLA MÉSZÁROS, AND AVERY ST. DIZIER

1

1

1

1

1

1 2

11

1 1

1

1

−2e1

−2e2

−e1 − e2

e2 − e1

To strengthen Conjecture 10, we extend the normalization operator N to the space of Laurent
generating functions by the formula

N

˜

ÿ

αPZn
cαx

α

¸

“
ÿ

αPNn
cα
xα

α!
.

For λ P Λ, we introduce the Laurent generating functions

chλpx1, . . . , xmq “
ÿ

µPΛ

dim Vpλqµ x
µ´λ and chλpx1, . . . , xmq “

ÿ

µPΛ

dim Mpλqµ x
µ´λ.

Note that every monomial appearing in the shifted characters chλ and chλ is a product of degree
zero monomials of the form xix

´1
j with i ą j.

We tested the following statement for λ “ ´wρ´ ρ and δ “ p1, . . . , 1q, for all permutations w
in Sm for m ď 6.10

Conjecture 12. The polynomial Npxδ chλpx1, . . . , xmqq is Lorentzian for any λ P Λ and δ P Nm.

For example, when m “ 4 and λ “ ´wρ´ ρ for the transposition w “ p1, 2q, we have

Npx1x2x3x4chλpx1, x2, x3, x4qq “
4

24
x4

4 `
2

6
x1x

3
4 `

2

6
x2x

3
4 `

4

6
x3x

3
4 `

3

4
x2

3x
2
4

`
1

2
x1x2x

2
4 `

2

2
x1x3x

2
4 `

2

2
x2x3x

2
4 `

1

6
x3

3x4 `
1

2
x1x

2
3x4 `

1

2
x2x

2
3x4 `

1

1
x1x2x3x4,

which is a Lorentzian polynomial. In general, the homogeneous polynomial Npxδchλq can be
computed using the Kazhdan–Lusztig theory [Hum08, Chapter 8].

Theorem 3 and Lemma 7 show that Conjecture 12 holds for any δ when λ is dominant. We
show that Conjecture 12 holds for any δ when λ is antidominant.

Proposition 13. The polynomial Npxδ chλpx1, . . . , xmqq is Lorentzian for any λ P Λ and δ P Nm.

10We point to https://github.com/avstdi/Lorentzian-Polynomials for code supporting the computations in
Section 3.

https://github.com/avstdi/Lorentzian-Polynomials
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Proof. Recall that the dimensions of the weight spaces of Mpλq are given by the Kostant partition
function p. In other words, we have

chλpx1, . . . , xmq “
ź

iąj

p1` xix
´1
j ` x2

ix
´2
j ` ¨ ¨ ¨ q.

Note that, in the expansion of the above product,11 only the terms of degree at least ´δ con-
tribute to Npxδchλq. Therefore, we may choose a suitably large α P Nm depending on δ P Nm so
that

Npxδchλq “ Npxδx´β
ź

iąj

px
αj
j ` xix

αj´1
j ` ¨ ¨ ¨ ` x

αj
i qq, where βi “ pm´ iqαi for all i.

Observe that the right-hand side is the β-th partial derivative of the normalized product of xδ

and
ř

k x
αj´k
i xkj , whose normalization is the Lorentzian polynomial

Npx
αj
j ` xix

αj´1
j ` ¨ ¨ ¨ ` x

αj
i q “

1

αj !
pxi ` xjq

αj .

The conclusion now follows from [BH19, Corollary 6.8]. �

Conjecture 10 for λ and µ follows from Conjecture 12 for λ and a sufficiently large δ. Conjec-
ture 12 for λ and δ follows from Conjecture 12 for λ and any δ1 larger than δ componentwise.

3.2. Schubert polynomials. For w P Sn and µ P Zn, we define the number Kwµ by

Swpx1, . . . , xnq “
ÿ

µ

Kwµx
µ.

As before, for µ P Zn and distinct i, j P rms, we set

µpi, jq “ µ` ei ´ ej .

We note that Theorem 2 can be strengthened as follows.

Proposition 14. For any w P Sn and any µ P Nn, we have

K2
wµ ě Kwµpi,jqKwµpj,iq for any i, j P rns.

Proof. By Theorem 6, the polynomial S_w is Lorentzian. The inequality follows from [BH19,
Proposition 9.4] applied to the Lorentzian polynomial S_w . �

Are normalized Schubert polynomials Lorentzian? We tested the following statement for all
permutations in Sn for n ď 8.

Conjecture 15. The polynomial NpSwpx1, . . . , xnqq is Lorentzian for any w P Sn.

11It is clear that the product is well-defined. Officially, the product occurs in the ring of formal characters of the
category O of slmpCq-modules, denoted X in [Hum08, Section 1.15].
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More generally, we conjecture that, for double Schubert polynomials [MS05, Section 15.5],

NpSwpx1, . . . , xn,´y1, . . . ,´ynqq is Lorentzian for any w P Sn.

This would imply that the support of any double Schubert polynomial is M-convex, and hence
“saturated” [MTY17, Conjecture 5.2].

Proposition 16. The support of Swpx1, . . . , xnq is M-convex for any w P Sn.

Proposition 16 was conjectured in [MTY17, Conjecture 5.1] and proved in [FMS18] using
an explicit description of flagged Schur modules. Here we give an alternative proof based on
Theorem 6. A similar argument can be used more generally to show that the supports of single
quiver polynomials appearing in [MS05, Section 17.4] are M-convex.

Proof. By Theorem 6, the support of S_w is M-convex. It is straightforward to check using the
definition of M-convexity the general fact that, if the support of hpx1, . . . , xnq is M-convex, then
the support of xµhpx´1

1 , . . . , x´1
n q is M-convex for any monomial xµ divisible by all monomials

in the support of h.12 �

Proposition 17. Conjecture 15 holds when w P Sn avoids the patterns 1423 and 1432.

Sketch of Proof. By [BH19, Corollary 6.7], the Lorentzian property of Sw implies that of NpSwq.
We deduce the Lorentzian property of Sw from known results on Schubert and Lorentzian
polynomials, for permutations avoiding 1423 and 1432.

It is shown in [FMS18, Theorem 7] that, for any w P Sn, the support of Sw is the set of
integral points in the Minkowski sum of n matroid polytopes. The set Jw of integral points in
the Cartesian product of these matroid polytopes is an M-convex subset of Nnˆn, and hence
the generating function fw of Jw is a Lorentzian polynomial in n2 variables xij [BH19, Theorem
7.1]. Since any nonnegative linear change of coordinates preserves the Lorentzian property
[BH19, Theorem 2.10], substituting the variables xij by xi in the generating function fw gives
a Lorentzian polynomial. According to [FMS19, Corollary 5.6] and [FG19, Theorem 1.1], this
specialization of fw coincides with Sw when w avoids 1423 and 1432, and thus Sw is Lorentzian
for such permutations. �

We note that the Schubert polynomials S1423 and S1432 are not Lorentzian.

3.3. Degree polynomials. Let w ă wpi, jq be a covering relation in the Bruhat order of Sn la-
belled by the transposition of i ă j in rns. The Chevalley multiplicity is the assignment

w ă wpi, jq ÞÝÑ
ÿ

iďkăj

xk,

12The general fact extends matroid duality [Oxl11, Chapter 2], which is the special case µ “ p1, . . . , 1q.
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where xk are independent variables. The degree polynomial of w P Sn is the generating function

Dwpx1, . . . , xn´1q “
ÿ

C

mCpx1, . . . , xn´1q,

where the sum is over all saturated chains C from the identity permutation to w, and mC is
the product of Chevalley multiplicities of the covering relations in C. The degree polynomials
were introduced by Bernstein, Gelfand, and Gelfand [BGG73] and studied from a combinatorial
perspective by Postnikov and Stanley [PS09].

Proposition 18. The degree polynomial Dwpx1, . . . , xn´1q is Lorentzian for any w P Sn.

Proof. Let B be the group of upper triangular matrices in GLnpCq, and let Xw be the closure
of the B-orbit of the permutation matrix corresponding to w in the flag variety GLnpCq{B. By
[PS09, Proposition 4.2], the degree polynomial of w is, up to a normalizing constant, the vol-
ume polynomial of Xw with respect to the line bundles associated to the fundamental weights
$1, . . . , $n´1. The conclusion follows from [BH19, Theorem 10.1]. �

The same argument shows that the analogous statement holds for Weyl groups in other types.

3.4. Skew Schur polynomials. Let λ{ν be a skew Young diagram. The skew Schur polynomial of
λ{ν in m variables is the generating function

sλ{νpx1, . . . , xmq “
ÿ

T

xµpTq, xµpTq “ x
µ1pTq
1 ¨ ¨ ¨xµmpTqm ,

where the sum is over all Young tableaux T of skew shape λ{ν with entries from rms, and

µipTq “ the number of i’s among the entries of T, for i “ 1, . . . ,m.

Are normalized skew Schur polynomials Lorentzian? We tested the following statement for all
partitions λ with at most 12 boxes and at most 6 parts.

Conjecture 19. The polynomial Npsλ{νpx1, . . . , xmqq is Lorentzian for any λ{ν.

Theorem 3 shows that Conjecture 19 holds when ν is zero, and Corollary 4 provides some
further evidence. We remark that the M-convexity of the support of any skew Schur polynomial
can be deduced from [MTY17, Proposition 2.9].

3.5. Schur P -polynomials. Let λ be a strict partition, that is, a decreasing sequence of positive
integers. The Schur P -polynomial of λ in m variables is the generating function

Pλpx1, . . . , xmq “
ÿ

T

xµpTq, xµpTq “ x
µ1pTq
1 ¨ ¨ ¨xµmpTqm ,

where the sum is over all marked shifted Young tableaux of shape λ with entries from rms. See
[Mac15, Chapter III] for this and other equivalent definitions of the polynomial Pλ.

Are normalized Schur P -polynomials Lorentzian? We tested the following statement for all
strict partitions λ with λ1 ď 12 and at most 4 parts.
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Conjecture 20. The polynomial NpPλpx1, . . . , xmqq is Lorentzian for any strict partition λ.

The M-convexity of the support of Pλ was observed in [MTY17, Proposition 3.5].

3.6. Grothendieck polynomials. Grothendieck polynomials are polynomial representatives of the
Schubert classes in the Grothendieck ring introduced by Lascoux and Schützenberger [LS83]. If
w is the longest permutation w˝ P Sn, then the Grothendieck polynomial of w is the monomial

Gw˝
px1, . . . , xnq “ xn´1

1 xn´2
2 ¨ ¨ ¨x1

n´1.

In general, if wpiq ą wpi` 1q for some i and si is the adjacent transposition pi i` 1q, then

Gwsipx1, . . . , xnq “ πiGwpx1, . . . , xnq, where πi “ Bi ´ Bixi`1.

Let `pwq be the degree of the Schubert polynomial ofw, let dpwq be the degree of the Grothendieck
polynomial ofw, and let Gkw be the degree `pwq`k homogeneous component of the Grothendieck
polynomial.

Conjecture 21. The polynomial p´1qkNpGkwpx1, . . . , xnqq is Lorentzian for anyw P Sn and k P N.

The M-convexity of the support of Gkw was conjectured in [MS17, Conjecture 5.1] and proved
in [EY17] when w is a Grassmannian permutation. Conjecture 21 implies Conjecture 15 because
the degree `pwq homogeneous component of Gw is the Schubert polynomial Sw.

We may strengthen Conjecture 21 in terms of the homogeneous Grothendieck polynomial

rGwpx1, . . . , xn, zq :“

dpwq´`pwq
ÿ

k“0

p´1qkGkwpx1, . . . , xnqz
dpwq´`pwq´k,

where z is a new variable. Are normalized homogeneous Grothendieck polynomials Lorentzian?
We tested the following statement for all permutations in Sn for n ď 7.

Conjecture 22. The polynomial NprGwpx1, . . . , xn, zqq is Lorentzian for any w P Sn.

Conjecture 22 implies Conjecture 21 because taking partial derivatives and setting a variable
equal to zero preserve the Lorentzian property. We expect an analogous Lorentzian property
for double Grothendieck polynomials.

3.7. Key polynomials. Key polynomials were introduced by Demazure for Weyl groups [Dem74]
and studied by Lascoux and Schützenberger for symmetric groups [LS90]. When µ P Nn is a
partition, the key polynomial of µ is the monomial

κµpx1, . . . , xnq “ xµ “ xµ1

1 ¨ ¨ ¨xµnn .

If µi ă µi`1 for some i and si is the adjacent transposition pi i` 1q, then

κµpx1, . . . , xnq “ Bixiκν , where ν “ µsi “ pµ1, . . . , µi`1, µi, . . . , µnq.

We refer to [RS95] for more information about key polynomials.
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Are normalized key polynomials Lorentzian? We tested the following statement for all com-
positions µ with at most 12 boxes and at most 6 parts.

Conjecture 23. The polynomial Npκµpx1, . . . , xnqq is Lorentzian for any µ P Nn.

Theorem 3 shows that Conjecture 23 holds when µ is a weakly increasing sequence of non-
negative integers, because in this case the key polynomial of µ is a Schur polynomial. The
M-convexity of the supports of key polynomials was conjectured in [MTY17, Conjecture 3.13]
and proved in [FMS18].

We remark that key polynomials [Dem74] and Schubert polynomials [KP87] are both char-
acters of flagged Schur modules.13 It is shown in [FMS18, Theorem 11] that the character of any
flagged Schur module has M-convex support. Are normalized characters of flagged Schur mod-
ules Lorentzian?
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[Oxl11] James Oxley, Matroid theory, 2nd ed., Oxford Graduate Texts in Mathematics, vol. 21, Oxford University
Press, Oxford, 2011. Ò12

[Pos09] Alexander Postnikov, Permutohedra, associahedra, and beyond, Int. Math. Res. Not. IMRN 6 (2009), 1026–
1106. Ò4

[PS09] Alexander Postnikov and Richard P. Stanley, Chains in the Bruhat order, J. Algebraic Combin. 29 (2009),
no. 2, 133–174. Ò13

[RS95] Victor Reiner and Mark Shimozono, Key polynomials and a flagged Littlewood-Richardson rule, J. Combin.
Theory Ser. A 70 (1995), no. 1, 107–143. Ò14, 15

[Sch14] Rolf Schneider, Convex bodies: the Brunn-Minkowski theory, Second expanded edition, Encyclopedia of
Mathematics and its Applications, vol. 151, Cambridge University Press, Cambridge, 2014. Ò9
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