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Motivation from representation

theory



Weight lattices

Integral weight lattice of sln(C):

Λ := Z{e1, . . . , en}/

(
n∑

i=1

ei = 0

)
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Irreducible representations

Λ −→ {irreducible representations of sln(C)}
λ 7−→ V (λ)
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Dominant Weyl chamber

V (λ) is finite dimensional if and only if λ is dominant.
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Weight multiplicities

Each V (λ) has a weight space decomposition

V (λ) =
⊕
µ

V (λ)µ.

All V (λ)µ are finite dimensional.
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Weight multiplicities
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Log-concavity of weight multiplicities

Theorem (Huh–M.–Mészáros–St. Dizier 2019)

For λ, µ ∈ Λ with λ dominant, we have

(dimV (λ)µ)2 ≥ dimV (λ)µ+ei−ej dimV (λ)µ−ei+ej

for any i , j ∈ [n].

It’s easy for sl2(C) because all weight spaces are one dimensional.

6



Log-concavity of weight multiplicities

Theorem (Huh–M.–Mészáros–St. Dizier 2019)
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Counterexample in other types

The theorem fails for sp4(C)!
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Antidominant Weyl chamber

If λ ∈ Λ is antidominant, then V (λ) = M(λ). ← Verma module

Proposition (Huh–M.–Mészáros–St. Dizier 2019)

For any λ, µ ∈ Λ, we have

(dimM(λ)µ)2 ≥ dimM(λ)µ+ei−ej dimM(λ)µ−ei+ej

for any i , j ∈ [n].

Proof idea.

It is known that

dimM(λ)µ = p(µ− λ),← Kostant’s partition function

which is the number of ways of writing µ− λ as a sum of

negative roots.
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Main conjecture

Conjecture (Huh–M.–Mészáros–St. Dizier 2019)

For λ, µ ∈ Λ, we have

(dimV (λ)µ)2 ≥ dimV (λ)µ+ei−ej dimV (λ)µ−ei+ej

for any i , j ∈ [n].
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Schur polynomials



Schur polynomials

Definition

The Schur polynomial (in n variables) of a partition λ is

sλ(x1, . . . , xn) =
∑

T∈ SSYT
xµ(T ), xµ(T ) := x

µ1(T )
1 · · · xµ2(T )

2 .

For λ = (2, 1), we have

1 1
2

1 2
2

So,

s(2,1)(x1, x2) = x21x2 + x1x
2
2 .
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Continuous theorem

Grouping terms with the same µ gives

sλ(x1, . . . , xn) =
∑
µ

Kλµx
µ. ← Kλµ, Kostka number

The normalization operator is given by

N(xµ) =
xµ

µ!
:=

xµ1 · · · xµn
µ1! · · ·µn!

.

Continuous Theorem (Huh–M.–Mészáros–St. Dizier 2019)

For any partition λ, we have

N(sλ(x1, . . . , xn)) =
∑
µ

Kλµ
xµ

µ!

is either identically 0 or log(N(sλ)) is a concave function on Rn
>0.
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Discrete theorem

Discrete Theorem (Huh–M.–Mészáros–St. Dizier 2019)

For any partition λ and µ ∈ Nn, we have

K 2
λµ ≥ Kλ,µ+ei−ejKλ,µ−ei+ej

for any i , j ∈ [n].

The Discrete Theorem implies our first theorem on weight

multiplicities because

dimV (λ)µ = Kλµ.
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Okounkov’s Conjecture

Littlewood–Richardson coefficients cνλκ are given by

V (λ)⊗ V (κ) '
⊕
ν

V (ν)c
ν
λκ .

Conjecture (Okounkov 2003)

The discrete function

(λ, κ, ν) 7−→ log cνλκ

is a concave function.

Counterexample due to Chindris–Derksen–Weyman in 2007.
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Special case of Okounkov’s Conjecture

Discrete Theorem (Huh–M.–Mészáros–St. Dizier 2019)

For any partition λ and µ ∈ Nn, we have

K 2
λµ ≥ Kλ,µ+ei−ejKλ,µ−ei+ej

for any i , j ∈ [n].

The Discrete Theorem implies a special case of Okounkov’s

Conjecture:
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Main theorem

Main Theorem (Huh–M.–Mészáros–St. Dizier 2019)

For any partition λ, the normalized Schur polynomial

N(sλ(x1, . . . , xn))

is Lorentzian.
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Lorentzian polynomials



Lorentzian polynomials

Definition (Brändén–Huh 2019)

A degree d homogeneous polynomial h(x1, . . . , xn) is Lorentzian

if

• all coefficients of h are nonnegative,

• supp(h) has the exchange property, and

• the quadratic form ∂
∂xi1
· · · ∂

∂xid−2
(h) has at most one positive

eigenvalue for all i1, . . . , id−2 ∈ [n].
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Examples of Lorentzian polynomials

Nonexample:

s(2,0)(x1, x2) = x21 + x1x2 + x22

Its matrix is

[
1 1/2

1/2 1

]
.

Eigenvalues are 3/2 and 1/2.

Example:

N(s(2,0)(x1, x2)) =
x21
2 + x1x2 +

x22
2

Its matrix is

[
1/2 1/2

1/2 1/2

]
.

Eigenvalues are 0 and 1.
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Consequences of the Lorentzian property

Theorem (Brändén–Huh 2019)

If f =
∑

α
cα
α! x

α is a Lorentzian polynomial, then

• f is either identically 0 or log(f ) is concave on Rn
>0, and

• c2α ≥ cα+ei−ej cα−ei+ej for all α and for all i , j ∈ [n].

This implies our Continuous Theorem and our Discrete Theorem.
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Some words about the proof

Näıve attempt: induction

Example:

N(s(2,1)(x1, x2)) =
x21 x2
2 +

x1x22
2

∂
∂x1

N(s(2,1)(x1, x2)) = x1x2 +
x22
2 ← not symmetric!

Instead:

We show N(sλ(x1, . . . , xn)) is a volume polynomial.
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Conjectural Lorentzian polynomials

Polynomial Tested for

Schubert:

N(Sw (x1, . . . , xn))
n ≤ 8

Skew Schur:

N(sλ/µ(x1, . . . , xn))

λ with ≤ 12 boxes and

≤ 6 parts

Schur P:

N(Pλ(x1, . . . , xn))

strict λ with λ1 ≤ 12

and ≤ 4 parts

homog. Grothendieck:

N(G̃w (x1, . . . , xn, z))
n ≤ 7

Key:

N(κµ(x1, . . . , xn))

compositions µ with

≤ 12 boxes and ≤ 6

parts

https://github.com/avstdi/Lorentzian-Polynomials

- Thanks!
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