Logarithmic concavity of weight multiplicities for irreducible $\mathfrak{s l}_{n}(\mathbb{C})$-representations arXiv:1906.09633

June Huh, Jacob P. Matherne, Karola Mészáros, Avery St. Dizier

Institute for Advanced Study, University of Oregon, Cornell University

Geometric Methods in Representation Theory
AMS Fall Western Sectional Meeting

University of California at Riverside

Motivation from representation theory

Weight lattices

Integral weight lattice of $\mathfrak{s l}_{n}(\mathbb{C})$:

$$
\Lambda:=\mathbb{Z}\left\{e_{1}, \ldots, e_{n}\right\} /\left(\sum_{i=1}^{n} e_{i}=0\right)
$$

Irreducible representations

$\Lambda \longrightarrow\left\{\right.$ irreducible representations of $\left.\mathfrak{s l}_{n}(\mathbb{C})\right\}$
$\lambda \longmapsto V(\lambda)$

Dominant Weyl chamber

$V(\lambda)$ is finite dimensional if and only if λ is dominant.

Weight multiplicities

Each $V(\lambda)$ has a weight space decomposition

$$
V(\lambda)=\bigoplus_{\mu} V(\lambda)_{\mu}
$$

All $V(\lambda)_{\mu}$ are finite dimensional.

Weight multiplicities

Each $V(\lambda)$ has a weight space decomposition

$$
V(\lambda)=\bigoplus_{\mu} V(\lambda)_{\mu} .
$$

All $V(\lambda)_{\mu}$ are finite dimensional.

Weight multiplicities

Log-concavity of weight multiplicities

Theorem (Huh-M.-Mészáros-St. Dizier 2019)

For $\lambda, \mu \in \Lambda$ with λ dominant, we have

$$
\left(\operatorname{dim} V(\lambda)_{\mu}\right)^{2} \geq \operatorname{dim} V(\lambda)_{\mu+e_{i}-e_{j}} \operatorname{dim} V(\lambda)_{\mu-e_{i}+e_{j}}
$$

for any $i, j \in[n]$.

Log-concavity of weight multiplicities

Theorem (Huh-M.-Mészáros-St. Dizier 2019)

For $\lambda, \mu \in \Lambda$ with λ dominant, we have

$$
\left(\operatorname{dim} V(\lambda)_{\mu}\right)^{2} \geq \operatorname{dim} V(\lambda)_{\mu+e_{i}-e_{j}} \operatorname{dim} V(\lambda)_{\mu-e_{i}+e_{j}}
$$

for any $i, j \in[n]$.

It's easy for $\mathfrak{s l}_{2}(\mathbb{C})$ because all weight spaces are one dimensional.

Counterexample in other types

The theorem fails for $\mathfrak{s p}_{4}(\mathbb{C})$!

Antidominant Weyl chamber

If $\lambda \in \Lambda$ is antidominant, then $V(\lambda)=M(\lambda) . \leftarrow$ Verma module

Antidominant Weyl chamber

If $\lambda \in \Lambda$ is antidominant, then $V(\lambda)=M(\lambda) . \leftarrow$ Verma module Proposition (Huh-M.-Mészáros-St. Dizier 2019)
For any $\lambda, \mu \in \Lambda$, we have
$\left(\operatorname{dim} M(\lambda)_{\mu}\right)^{2} \geq \operatorname{dim} M(\lambda)_{\mu+e_{i}-e_{j}} \operatorname{dim} M(\lambda)_{\mu-e_{i}+e_{j}}$
for any $i, j \in[n]$.

Antidominant Weyl chamber

If $\lambda \in \Lambda$ is antidominant, then $V(\lambda)=M(\lambda) . \leftarrow$ Verma module
Proposition (Huh-M.-Mészáros-St. Dizier 2019)
For any $\lambda, \mu \in \Lambda$, we have
$\left(\operatorname{dim} M(\lambda)_{\mu}\right)^{2} \geq \operatorname{dim} M(\lambda)_{\mu+e_{i}-e_{j}} \operatorname{dim} M(\lambda)_{\mu-e_{i}+e_{j}}$
for any $i, j \in[n]$.

Proof idea.

It is known that

$$
\operatorname{dim} M(\lambda)_{\mu}=p(\mu-\lambda), \leftarrow \text { Kostant's partition function }
$$

which is the number of ways of writing $\mu-\lambda$ as a sum of negative roots.

Main conjecture

Main conjecture

Conjecture (Huh-M.-Mészáros-St. Dizier 2019)
For $\lambda, \mu \in \Lambda$, we have

$$
\left(\operatorname{dim} V(\lambda)_{\mu}\right)^{2} \geq \operatorname{dim} V(\lambda)_{\mu+e_{i}-e_{j}} \operatorname{dim} V(\lambda)_{\mu-e_{i}+e_{j}}
$$

for any $i, j \in[n]$.

Schur polynomials

Schur polynomials

Definition

The Schur polynomial (in n variables) of a partition λ is

$$
s_{\lambda}\left(x_{1}, \ldots, x_{n}\right)=\sum_{T \in \mathrm{SSYT}} x^{\mu(T)}, \quad x^{\mu(T)}:=x_{1}^{\mu_{1}(T)} \cdots x_{2}^{\mu_{2}(T)}
$$

Schur polynomials

Definition

The Schur polynomial (in n variables) of a partition λ is

$$
s_{\lambda}\left(x_{1}, \ldots, x_{n}\right)=\sum_{T \in \mathrm{SSYT}} x^{\mu(T)}, \quad x^{\mu(T)}:=x_{1}^{\mu_{1}(T)} \cdots x_{2}^{\mu_{2}(T)}
$$

For $\lambda=(2,1)$, we have

$$
\begin{array}{|l|l|l|l|}
\hline 1 & 1 & \begin{array}{|l|l|}
\hline 1 & 2 \\
\hline 2 & \\
\hline
\end{array} \\
\hline
\end{array}
$$

So,

$$
s_{(2,1)}\left(x_{1}, x_{2}\right)=x_{1}^{2} x_{2}+x_{1} x_{2}^{2}
$$

Continuous theorem

Grouping terms with the same μ gives

$$
s_{\lambda}\left(x_{1}, \ldots, x_{n}\right)=\sum_{\mu} K_{\lambda \mu} x^{\mu} . \quad \leftarrow K_{\lambda \mu}, \text { Kostka number }
$$

Continuous theorem

Grouping terms with the same μ gives

$$
s_{\lambda}\left(x_{1}, \ldots, x_{n}\right)=\sum_{\mu} K_{\lambda \mu} x^{\mu} . \quad \leftarrow K_{\lambda \mu}, \text { Kostka number }
$$

The normalization operator is given by

$$
N\left(x^{\mu}\right)=\frac{x^{\mu}}{\mu!}:=\frac{x^{\mu_{1}} \cdots x^{\mu_{n}}}{\mu_{1}!\cdots \mu_{n}!}
$$

Continuous theorem

Grouping terms with the same μ gives

$$
s_{\lambda}\left(x_{1}, \ldots, x_{n}\right)=\sum_{\mu} K_{\lambda \mu} x^{\mu} . \quad \leftarrow K_{\lambda \mu}, \text { Kostka number }
$$

The normalization operator is given by

$$
N\left(x^{\mu}\right)=\frac{x^{\mu}}{\mu!}:=\frac{x^{\mu_{1}} \cdots x^{\mu_{n}}}{\mu_{1}!\cdots \mu_{n}!}
$$

Continuous Theorem (Huh-M.-Mészáros-St. Dizier 2019)

For any partition λ, we have

$$
N\left(s_{\lambda}\left(x_{1}, \ldots, x_{n}\right)\right)=\sum_{\mu} K_{\lambda \mu} \frac{x^{\mu}}{\mu!}
$$

is either identically 0 or $\log \left(N\left(s_{\lambda}\right)\right)$ is a concave function on $\mathbb{R}_{>0}^{n}$.

Discrete theorem

Discrete Theorem (Huh-M.-Mészáros-St. Dizier 2019)

For any partition λ and $\mu \in \mathbb{N}^{n}$, we have

$$
K_{\lambda \mu}^{2} \geq K_{\lambda, \mu+e_{i}-e_{j}} K_{\lambda, \mu-e_{i}+e_{j}}
$$

for any $i, j \in[n]$.

Discrete theorem

Discrete Theorem (Huh-M.-Mészáros-St. Dizier 2019)

For any partition λ and $\mu \in \mathbb{N}^{n}$, we have

$$
K_{\lambda \mu}^{2} \geq K_{\lambda, \mu+e_{i}-e_{j}} K_{\lambda, \mu-e_{i}+e_{j}}
$$

for any $i, j \in[n]$.
The Discrete Theorem implies our first theorem on weight multiplicities because

$$
\operatorname{dim} V(\lambda)_{\mu}=K_{\lambda \mu}
$$

Okounkov's Conjecture

Littlewood-Richardson coefficients $c_{\lambda \kappa}^{\nu}$ are given by

$$
V(\lambda) \otimes V(\kappa) \simeq \bigoplus_{\nu} V(\nu)^{c_{\lambda \kappa}^{\nu}} .
$$

Okounkov's Conjecture

Littlewood-Richardson coefficients $c_{\lambda \kappa}^{\nu}$ are given by

$$
V(\lambda) \otimes V(\kappa) \simeq \bigoplus_{\nu} V(\nu)^{c_{\lambda \kappa}^{\nu}} .
$$

Conjecture (Okounkov 2003)

The discrete function

$$
(\lambda, \kappa, \nu) \longmapsto \log c_{\lambda \kappa}^{\nu}
$$

is a concave function.

Okounkov's Conjecture

Littlewood-Richardson coefficients $c_{\lambda \kappa}^{\nu}$ are given by

$$
V(\lambda) \otimes V(\kappa) \simeq \bigoplus_{\nu} V(\nu)^{c_{\lambda \kappa}^{\nu}} .
$$

Conjecture (Okounkov 2003)

The discrete function

$$
(\lambda, \kappa, \nu) \longmapsto \log c_{\lambda \kappa}^{\nu}
$$

is a concave function.
Counterexample due to Chindris-Derksen-Weyman in 2007.

Special case of Okounkov's Conjecture

Discrete Theorem (Huh-M.-Mészáros-St. Dizier 2019)
For any partition λ and $\mu \in \mathbb{N}^{n}$, we have

$$
K_{\lambda \mu}^{2} \geq K_{\lambda, \mu+e_{i}-e_{j}} K_{\lambda, \mu-e_{i}+e_{j}}
$$

for any $i, j \in[n]$.

Special case of Okounkov's Conjecture

Discrete Theorem (Huh-M.-Mészáros-St. Dizier 2019)
For any partition λ and $\mu \in \mathbb{N}^{n}$, we have

$$
K_{\lambda \mu}^{2} \geq K_{\lambda, \mu+e_{i}-e_{j}} K_{\lambda, \mu-e_{i}+e_{j}}
$$

for any $i, j \in[n]$.
The Discrete Theorem implies a special case of Okounkov's Conjecture:

Special case of Okounkov's Conjecture

Discrete Theorem (Huh-M.-Mészáros-St. Dizier 2019)
For any partition λ and $\mu \in \mathbb{N}^{n}$, we have

$$
K_{\lambda \mu}^{2} \geq K_{\lambda, \mu+e_{i}-e_{j}} K_{\lambda, \mu-e_{i}+e_{j}}
$$

for any $i, j \in[n]$.
The Discrete Theorem implies a special case of Okounkov's Conjecture:

Main theorem

Main Theorem (Huh-M.-Mészáros-St. Dizier 2019)
For any partition λ, the normalized Schur polynomial

$$
N\left(s_{\lambda}\left(x_{1}, \ldots, x_{n}\right)\right)
$$

is Lorentzian.

Lorentzian polynomials

Lorentzian polynomials

Definition (Brändén-Huh 2019)

A degree d homogeneous polynomial $h\left(x_{1}, \ldots, x_{n}\right)$ is Lorentzian if

- all coefficients of h are nonnegative,
- $\operatorname{supp}(h)$ has the exchange property, and
- the quadratic form $\frac{\partial}{\partial x_{i_{1}}} \cdots \frac{\partial}{\partial x_{i_{d}-2}}(h)$ has at most one positive eigenvalue for all $i_{1}, \ldots, i_{d-2} \in[n]$.

Examples of Lorentzian polynomials

Nonexample:

$s_{(2,0)}\left(x_{1}, x_{2}\right)=x_{1}^{2}+x_{1} x_{2}+x_{2}^{2}$
Its matrix is $\left[\begin{array}{cc}1 & 1 / 2 \\ 1 / 2 & 1\end{array}\right]$.
Eigenvalues are $3 / 2$ and $1 / 2$.

Examples of Lorentzian polynomials

Nonexample:

$s_{(2,0)}\left(x_{1}, x_{2}\right)=x_{1}^{2}+x_{1} x_{2}+x_{2}^{2}$
Its matrix is $\left[\begin{array}{cc}1 & 1 / 2 \\ 1 / 2 & 1\end{array}\right]$.
Eigenvalues are $3 / 2$ and $1 / 2$.

Example:
$N\left(s_{(2,0)}\left(x_{1}, x_{2}\right)\right)=\frac{x_{1}^{2}}{2}+x_{1} x_{2}+\frac{x_{2}^{2}}{2}$
Its matrix is $\left[\begin{array}{ll}1 / 2 & 1 / 2 \\ 1 / 2 & 1 / 2\end{array}\right]$.
Eigenvalues are 0 and 1 .

Consequences of the Lorentzian property

Theorem (Brändén-Huh 2019)

If $f=\sum_{\alpha} \frac{c_{\alpha}}{\alpha!} x^{\alpha}$ is a Lorentzian polynomial, then

- f is either identically 0 or $\log (f)$ is concave on $\mathbb{R}_{>0}^{n}$, and
- $c_{\alpha}^{2} \geq c_{\alpha+e_{i}-e_{j}} c_{\alpha-e_{i}+e_{j}}$ for all α and for all $i, j \in[n]$.

Consequences of the Lorentzian property

Theorem (Brändén-Huh 2019)

If $f=\sum_{\alpha} \frac{c_{\alpha}}{\alpha!} x^{\alpha}$ is a Lorentzian polynomial, then

- f is either identically 0 or $\log (f)$ is concave on $\mathbb{R}_{>0}^{n}$, and
- $c_{\alpha}^{2} \geq c_{\alpha+e_{i}-e_{j}} c_{\alpha-e_{i}+e_{j}}$ for all α and for all $i, j \in[n]$.

This implies our Continuous Theorem and our Discrete Theorem.

Some words about the proof

Naïve attempt: induction

Example:

$N\left(s_{(2,1)}\left(x_{1}, x_{2}\right)\right)=\frac{x_{1}^{2} x_{2}}{2}+\frac{x_{1} x_{2}^{2}}{2}$
$\frac{\partial}{\partial x_{1}} N\left(s_{(2,1)}\left(x_{1}, x_{2}\right)\right)=x_{1} x_{2}+\frac{x_{2}^{2}}{2} \leftarrow$ not symmetric!

Some words about the proof

Naïve attempt: induction

Example:

$N\left(s_{(2,1)}\left(x_{1}, x_{2}\right)\right)=\frac{x_{1}^{2} x_{2}}{2}+\frac{x_{1} x_{2}^{2}}{2}$
$\frac{\partial}{\partial x_{1}} N\left(s_{(2,1)}\left(x_{1}, x_{2}\right)\right)=x_{1} x_{2}+\frac{x_{2}^{2}}{2} \leftarrow$ not symmetric!

Instead:

We show $N\left(s_{\lambda}\left(x_{1}, \ldots, x_{n}\right)\right)$ is a volume polynomial.

Conjectural Lorentzian polynomials

Polynomial	Tested for
Schubert:	$n \leq 8$
$N\left(\mathfrak{S}_{w}\left(x_{1}, \ldots, x_{n}\right)\right)$	λ with ≤ 12 boxes and
Skew Schur:	≤ 6 parts
$N\left(s_{\lambda / \mu}\left(x_{1}, \ldots, x_{n}\right)\right)$	strict λ with $\lambda_{1} \leq 12$ and ≤ 4 parts
Schur P:	$n\left(P_{\lambda}\left(x_{1}, \ldots, x_{n}\right)\right)$
homog. Grothendieck:	$n \leq 7$
$N\left(\widetilde{\mathfrak{G}}_{w}\left(x_{1}, \ldots, x_{n}, z\right)\right)$	compositions μ with ≤ 12 boxes and ≤ 6 Key: $N\left(\kappa_{\mu}\left(x_{1}, \ldots, x_{n}\right)\right)$
	parts

https://github.com/avstdi/Lorentzian-Polynomials

Conjectural Lorentzian polynomials

Polynomial	Tested for
Schubert:	$n \leq 8$
$N\left(\mathfrak{S}_{w}\left(x_{1}, \ldots, x_{n}\right)\right)$	λ with ≤ 12 boxes and
Skew Schur:	≤ 6 parts
$N\left(s_{\lambda / \mu}\left(x_{1}, \ldots, x_{n}\right)\right)$	strict λ with $\lambda_{1} \leq 12$
Schur P:	and ≤ 4 parts
$N\left(P_{\lambda}\left(x_{1}, \ldots, x_{n}\right)\right)$	$n \leq 7$
homog. Grothendieck:	$N\left(\widetilde{\mathfrak{G}}_{w}\left(x_{1}, \ldots, x_{n}, z\right)\right)$
Key:	compositions μ with $N\left(\kappa_{\mu}\left(x_{1}, \ldots, x_{n}\right)\right)$
	parts boxes and ≤ 6

https://github.com/avstdi/Lorentzian-Polynomials - Thanks!

