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A number of graded objects associated to a matroid have played a recent role in the resolution
of long-standing conjectures in the field of matroid theory. The goal of this report is to survey
what is known about their Poincaré polynomials.

To a (loopless) matroid M, one may associate the following graded objects:

(1) the intersection cohomology module IHpMq [BHM+20],
(2) its “stalk at the empty flat” IHpMqH [BHM+20],
(3) the augmented Chow ring CHpMq [BHM+22], and
(4) the Chow ring CHpMq [FY04].

Each of these objects has a topological interpretation when the matroid M is realizable by a
collection of vectors in a complex vector space V . These interpretations hinge on a certain sin-
gular projective variety YA, introduced in [AB16] and now called the matroid Schubert variety,
that is constructed from the vector space V . It gets its name from the analogous role it plays in
the Kazhdan–Lusztig theory of matroids [EPW16] that the classical Schubert varieties play in the
Kazhdan–Lusztig theory of Coxeter groups [KL79, KL80].

The matroid Schubert variety YA has a canonical resolution of singularities πA : rYA Ñ YA, where
rYA is the so-called augmented wonderful variety. In the realizable case, the respective graded
objects in the numbered list above are isomorphic (with a degree-doubling isomorphism) to the
following topological objects:

(1) the intersection cohomology IHpYAq of YA,
(2) the local intersection cohomology IHp8,...,8qpYAq of YA at the point

p8, . . . ,8q P YA,
(3) the cohomology HprYAq of rYA, and
(4) the cohomology Hpπ´1

A p8, . . . ,8qq of the fiber π´1
A p8, . . . ,8q.

Although most matroids are not realizable [Nel18], the miracle is that arbitrary matroids be-
have as if they were geometric objects. Indeed, IHpMq, CHpMq, and CHpMq satisfy the Kähler package
[BHM+20, AHK18, BHM+22], a trio of important results consisting of Poincaré duality, the hard
Lefschetz theorem, and the Hodge–Riemann relations. The Heron–Rota–Welsh conjecture on the
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log-concavity of the characteristic polynomial of M [Her72,Rot71,Wel76] follows from the Hodge–
Riemann relations for CHpMq, and both the Dowling–Wilson top-heavy conjecture on the shape
of the lattice of flats of M [DW74, DW75] and the nonnegativity of the Kazhdan–Lusztig and Z-
polynomials of a matroid [EPW16, GPY17] (see the bulleted list below) follow from the hard Lef-
schetz theorem for IHpMq. There has been an industry of recent interest in studying the respective
Poincaré polynomials of the graded objects in the first bulleted list:

(1) the Z-polynomial ZMptq of a matroid M [PXY18],
(2) the Kazhdan–Lusztig polynomial PMptq of a matroid M [EPW16],
(3) the augmented Chow polynomial HMptq of a matroid M [FMSV24], and
(4) the Chow polynomial HMptq of a matroid M [FMSV24].

Conjecture 0.1 ([PXY18,GPY17,Ste21,FS22]). The polynomials ZMptq, PMptq, HMptq, and HMptq are
real-rooted for every matroid M.

Real-rootedness is the strictest condition in a sequence of implications involving interesting
combinatorial patterns for single-variable polynomials whose coefficient sequence consists of non-
negative integers and has no internal zeros:

γ-positivity1

real-rootedness log-concavity unimodality

The polynomials PMptq and ZMptq are real-rooted in the following cases: when M “ Ud,n is
uniform of rank d on n elements for all d ě 1 and all 2 ď n ´ d ď 15 [GLX+21]; when M is a fan,
wheel, or whirl matroid [LXY22]; and when M is a sparse paving matroid with at most 30 elements
[FV22]. Log-concavity of PMptq holds for all uniform matroids [XZ23].

Poincaré duality and the hard Lefschetz theorem for CHpMq and CHpMq imply unimodality for
HMptq and HMptq, and the same theorems for IHpMq imply unimodality for ZMptq. In [FMSV24], the
semi-small decomposition of CHpMq and CHpMq from [BHM+22] are used to prove the γ-positivity
of HMptq and HMptq; and, a result of Braden–Vysogorets [BV20] is used to prove γ-positivity for
ZMptq.2

Whereas PMptq and ZMptq were defined recursively in [EPW16,PXY18], and their interpretation
as Poincaré polynomials was established later [BHM+20], the story for HMptq and HMptq is the
reverse. In [FMSV24] a recursive formula was given for the Poincaré polynomials HMptq and
HMptq, paralleling the definition of PMptq and ZMptq. This formula leads to several consequences
[FMSV24]: HMptq and HMptq are real-rooted for M sparse paving with at most 40 elements; HMptq

1The notion of γ-positivity is only meaningful for palindromic polynomials, so we do not consider it for PMptq.
2The former was observed independently by Botong Wang, and the latter resolved a conjecture in [FNV23].



POINCARÉ POLYNOMIALS ASSOCIATED TO GEOMETRIC LATTICES 3

is real-rooted for M uniform since it is an example of a generalized binomial Eulerian polynomial
of Haglund–Zhang [HZ19]; and HMptq (respectively HMptq) is real-rooted for all M with rank less
than five (respectively six) by using the fact that CHpMq and CHpMq are Koszul algebras [MM23]
together with results from [RW05].
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(MFO) Report for the workshop “Arrangements, Matroids and Logarithmic Vector Fields” held
during June 16–21, 2024. The author is grateful to the organizers of that workshop for providing a
stimulating environment for research.
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