SYZYGIES OF POLYMATROIDAL IDEALS

YAIRON CID-RUIZ, JACOB P. MATHERNE, AND ANNA SHAPIRO

ABSTRACT. We introduce the cave polynomial of a polymatroid and show that it yields a valuative function on polymatroids. The support of this polynomial after homogenization is again a polymatroid. The cave polynomial gives a K-theoretic description of a polymatroid in the augmented K-ring of a multisymmetric lift. As applications, we settle two conjectures: one by Bandari, Bayati, and Herzog regarding polymatroidal ideals, and another by Castillo, Cid-Ruiz, Mohammadi, and Montaño regarding the Möbius support of a polymatroid.

1. Introduction

A polymatroid \mathscr{P} on the set $[p] = \{1, ..., p\}$ with cage $\mathbf{m} = (m_1, ..., m_p) \in \mathbb{N}^p$ is given by a function $\operatorname{rk}_{\mathscr{P}} \colon 2^{[p]} \to \mathbb{N}$ satisfying the following properties:

- (i) (Normalization) $\operatorname{rk}_{\mathscr{P}}(\varnothing) = 0$.
- (ii) (Monotonicity) $\operatorname{rk}_{\mathscr{P}}(J_1) \leqslant \operatorname{rk}_{\mathscr{P}}(J_2)$ if $J_1 \subseteq J_2 \subseteq [\mathfrak{p}]$.
- (iii) (Submodularity) $\operatorname{rk}_{\mathscr{P}}(J_1 \cap J_2) + \operatorname{rk}_{\mathscr{P}}(J_1 \cup J_2) \leqslant \operatorname{rk}_{\mathscr{P}}(J_1) + \operatorname{rk}_{\mathscr{P}}(J_2)$ for all $J_1, J_2 \subseteq [p]$.
- (iv) (Cage) $\operatorname{rk}_{\mathscr{P}}(\{i\}) \leqslant \mathfrak{m}_i$ for all $i \in [\mathfrak{p}]$.

We say that $\mathrm{rk}_{\mathscr{P}} \colon 2^{[p]} \to \mathbb{N}$ is the *rank function* of \mathscr{P} and that the *rank* of \mathscr{P} is given by $\mathrm{rk}(\mathscr{P}) = \mathrm{rk}_{\mathscr{P}}([p])$. A polymatroid with cage $\mathbf{m} = (1, ..., 1)$ is called a *matroid*.

Let $R = \Bbbk[x_1, \ldots, x_p]$ be a polynomial ring over a field \Bbbk . Let $\mathscr P$ be a polymatroid on the set [p] with cage $\mathbf m \in \mathbb N^p$. The *polymatroidal ideal* $I_\mathscr P \subset R$ of $\mathscr P$ is the monomial ideal generated by the monomials corresponding to the lattice points in the base polytope $B(\mathscr P)$ of $\mathscr P$. For each $\mathfrak i \geqslant 0$, the $\mathfrak i$ -th *homological shift ideal* $HS_{\mathfrak i}(I_\mathscr P) \subset R$ of $I_\mathscr P$ is the monomial ideal generated by the monomials corresponding to the shifts in the $\mathfrak i$ -th position of the minimal free R-resolution of $I_\mathscr P$.

Let $I(\mathscr{P})$ be the independence polytope of \mathscr{P} . The *Möbius function* $\mu_{\mathscr{P}} \colon \mathbb{Z}^p \to \mathbb{Z}$ of the polymatroid \mathscr{P} is defined inductively by setting $\mu_{\mathscr{P}}(\mathbf{n}) = 1$ if $\mathbf{n} \in B(\mathscr{P})$ and

$$\mu_{\mathscr{P}}(\mathbf{n}) = 1 - \sum_{\mathbf{w} \in (\mathbf{n} + \mathbb{Z}_{>0}^p) \cap I(\mathscr{P})} \mu_{\mathscr{P}}(\mathbf{w})$$

if $\mathbf{n} \in \mathrm{I}(\mathscr{P}) \setminus \mathrm{B}(\mathscr{P})$. For all $\mathbf{n} \in \mathbb{Z}^p \setminus \mathrm{I}(\mathscr{P})$, we set $\mu_{\mathscr{P}}(\mathbf{n}) = 0$. The *Möbius support* of \mathscr{P} is defined as μ -supp $(\mathscr{P}) = \{\mathbf{n} \in \mathbb{N}^p \mid \mu_{\mathscr{P}}(\mathbf{n}) \neq 0\}$.

The main goal of this paper is to settle the following two conjectures regarding polymatroids.

Conjecture 1.1 (Bandari – Bayati – Herzog [Bay18, HMRZ21]). *All the homological shift ideals* $HS_i(I_{\mathscr{P}})$ of $I_{\mathscr{P}}$ are again polymatroidal ideals.

Conjecture 1.2 (Castillo – Cid-Ruiz – Mohammadi – Montaño [CCRMM22]). *The Möbius support of* \mathscr{P} *is a generalized polymatroid* (*i.e.*, a homogenization of it yields a polymatroid).

Conjecture 1.1 has been verified in the following cases: in [Bay18], if \mathscr{P} is a matroid; in [HMRZ21], if \mathscr{P} satisfies the strong exchange property; in [FH23], if \mathscr{P} has rank two; see also [Fic22]. In [CCRMM22, Theorem 7.17], the conclusion of Conjecture 1.2 was proven in the case where \mathscr{P} is realizable, thus serving as motivation to state this conjecture. By [CCRMM22, Theorem 7.19] or [EL23, Remark 3.5], we know that Conjecture 1.2 holds when \mathscr{P} is a matroid.

The K-ring of a matroid was recently introduced by Larson, Li, Payne, and Proudfoot [LLPP24]. Since the K-ring of a matroid has already become an object of interest, we are also interested in a K-theoretic description of the polymatroid \mathscr{P} . Let \mathscr{M} be a matroid on a ground set E with subsets $S_1, \ldots, S_p \subseteq E$ such that the restriction polymatroid is \mathscr{P} . By considering the augmented K-ring of \mathscr{M} , we say that the *Snapper polynomial* of \mathscr{P} is given by

$$Snapp_{\mathscr{P}}(t_1,...,t_p) = \chi \Big(\mathscr{M}, \mathcal{L}_{S_1}^{\otimes t_1} \otimes \cdots \otimes \mathcal{L}_{S_p}^{\otimes t_p} \Big).$$

For more details, see Definition 2.15, Definition 2.16, and Definition 2.17.

Motivated by the combinatorial notion of *caves* introduced in [CCRMM22], we introduce the *cave polynomial* of a polymatroid. The cave polynomial of \mathcal{P} is given by

$$\text{cave}_{\mathscr{P}}(t_1,\ldots,t_p) = \sum_{\mathbf{n}\in\mathbb{N}^p \text{ and } |\mathbf{n}|=\text{rk}(\mathscr{P})} \mathbb{1}_{\mathscr{P}}(\mathbf{n}) \prod_{i=1}^{p-1} \left(1 - \max_{i < j} \left\{ \mathbb{1}_{\mathscr{P}}\left(\mathbf{n} - \mathbf{e}_i + \mathbf{e}_j\right)\right\} t_i^{-1} \right) \mathbf{t}^{\mathbf{n}},$$

where $\mathbb{1}_{\mathscr{P}}$ denotes the indicator function of the base polytope $B(\mathscr{P})$ of \mathscr{P} . It turns out that the Snapper polynomial $\operatorname{Snapp}_{\mathscr{P}}(t_1,\ldots,t_p)$ and the cave polynomial $\operatorname{cave}_{\mathscr{P}}(t_1,\ldots,t_p)$ encode the same information. Indeed, we have the equality

$$\operatorname{Snapp}_{\mathscr{D}}(\mathsf{t}_1,\ldots,\mathsf{t}_{\mathfrak{D}}) = \mathfrak{b}(\operatorname{cave}_{\mathscr{D}}(\mathsf{t}_1,\ldots,\mathsf{t}_{\mathfrak{D}})),$$

where $\mathfrak{b}\colon \mathbb{Q}[t_1,\ldots,t_p]\to \mathbb{Q}[t_1,\ldots,t_p]$ is the \mathbb{Q} -linear map sending $t_1^{\mathfrak{n}_1}\cdots t_p^{\mathfrak{n}_p}$ to $\binom{t_1+\mathfrak{n}_1}{\mathfrak{n}_1}\cdots \binom{t_p+\mathfrak{n}_p}{\mathfrak{n}_p}$ (see (3)).

Our goal is to investigate various aspects of the cave polynomial. When \mathscr{P} is realizable, our approach is to consider the corresponding multiplicity-free variety (see Remark 2.5). To address the general case (where \mathscr{P} need not be realizable), our main idea is to show that the cave polynomial yields a *valuative function* on polymatroids. The theorem below contains our main results.

Theorem A. Conjecture 1.1 and Conjecture 1.2 hold. More precisely, we have:

- (i) The support of the cave polynomial cave $\mathscr{P}(t_1,...,t_p)$ of \mathscr{P} is a generalized polynatroid.
- (ii) The cave polynomial cave $\mathscr{P}(t_1,...,t_p)$ of \mathscr{P} satisfies the equality

$$cave_{\mathscr{P}}(t_1,\ldots,t_p) = \sum_{\boldsymbol{n}\in\mathbb{N}^p} \mu_{\mathscr{P}}(\boldsymbol{n}) \, t_1^{n_1}\cdots t_p^{n_p}.$$

In particular, Conjecture 1.2 holds.

(iii) The K-polynomial of the polymatroidal ideal $I_{\mathscr{P}} \subset R$ is given by

$$\mathfrak{K}(I_{\mathscr{P}};t_1,\ldots,t_p)\,=\,t_1^{\mathfrak{m}_1}\cdots t_p^{\mathfrak{m}_p}\,\text{cave}_{\mathscr{P}^\vee}\left(t_1^{-1},\ldots,t_p^{-1}\right),$$

where $\mathscr{P}^{\vee} = \mathbf{m} - \mathscr{P}$ is the dual polymatroid with respect to the cage \mathbf{m} . Thus the i-th homological shift ideal of $I_{\mathscr{P}}$ is given by

$$\mathrm{HS}_{\mathfrak{i}}\left(\mathrm{I}_{\mathscr{P}}\right) \,=\, \Big(x_{1}^{n_{1}}\cdots x_{p}^{n_{p}} \,\mid\, \mathbf{n}\in\mathbb{N}^{p},\, |\mathbf{n}|=\mathrm{rk}(\mathscr{P})+\mathfrak{i} \,\text{ and }\, \mu_{\mathscr{P}^{\vee}}(\mathbf{m}-\mathbf{n})\neq 0\Big).$$

In particular, Conjecture 1.1 holds.

(iv) The function $\mathscr{P} \mapsto \operatorname{cave}_{\mathscr{P}}(\mathsf{t}_1,\ldots,\mathsf{t}_p)$ assigning the cave polynomial to a polymatroid is valuative.

2. Proofs of our results

Let \mathscr{P} be a polymatroid on $[p] = \{1, ..., p\}$ with rank function $\operatorname{rk}_{\mathscr{P}} \colon 2^{[p]} \to \mathbb{Z}$. Let $\mathbf{m} = (m_1, ..., m_p) \in \mathbb{N}^p$ be a cage for the polymatroid \mathscr{P} . This means that

$$\operatorname{rk}_{\mathscr{P}}(\{i\}) \leqslant \mathfrak{m}_i \quad \text{for all} \quad 1 \leqslant i \leqslant \mathfrak{p}.$$

Let \Bbbk be a field and $R = \Bbbk[x_1, \ldots, x_p]$ be a standard \mathbb{N}^p -graded polynomial ring with $deg(x_i) = \mathbf{e}_i \in \mathbb{N}^p$ for every i. Let $S = \Bbbk[x_{i,j} \mid 1 \leqslant i \leqslant p, 0 \leqslant j \leqslant m_i]$ be a standard \mathbb{N}^p -graded polynomial ring with $deg(x_{i,j}) = \mathbf{e}_i \in \mathbb{N}^p$ for every i,j. We note that

$$MultiProj(S) = \mathbb{P} := \mathbb{P}_{\mathbb{L}}^{m_1} \times_{\mathbb{k}} \cdots \times_{\mathbb{k}} \mathbb{P}_{\mathbb{L}}^{m_p}$$

is the product of projective spaces associated to S.

The *base polytope* of the polymatroid \mathcal{P} is given by

$$B(\mathscr{P}) := \left\{ \begin{array}{l} \mathbf{v} = (\nu_1, \dots, \nu_p) \in \mathbb{R}^p_{\geqslant 0} \ \middle| \ \sum_{i=1}^p \nu_i = \mathrm{rk}(\mathscr{P}) \ \text{ and } \ \sum_{j \in J} \nu_j \leqslant \mathrm{rk}(J) \ \text{for all } J \subseteq [p] \end{array} \right\}.$$

The *independence polytope* of \mathcal{P} is defined as

$$I(\mathscr{P}) \,:=\, \Big\{ \ \ \textbf{v} = (\nu_1, \ldots, \nu_p) \in \mathbb{R}^p_{\geqslant 0} \ \ \Big| \ \ \textstyle \sum_{j \in J} \nu_j \leqslant \text{rk}(J) \text{ for all } J \subseteq [p] \ \ \Big\}.$$

We have the following equality

$$I(\mathscr{P}) = \left(B(\mathscr{P}) + \mathbb{R}^{\mathfrak{p}}_{\leqslant 0}\right) \cap \mathbb{R}^{\mathfrak{p}}_{\geqslant 0},$$

where + denotes the Minkowski sum.

Our two objects of interest are the following.

Definition 2.1. (i) The *polymatroidal ideal* $I_{\mathscr{P}} \subset R$ of the polymatroid \mathscr{P} is the monomial ideal given by

$$I_{\mathscr{P}} := \left(\mathbf{x}^{\mathbf{n}} = \mathbf{x}_{1}^{n_{1}} \cdots \mathbf{x}_{p}^{n_{p}} \mid \mathbf{n} \in B(\mathscr{P}) \cap \mathbb{N}^{p} \right).$$

(ii) The *Möbius function* $\mu_{\mathscr{P}} \colon \mathbb{Z}^p \to \mathbb{Z}$ of the polymatroid \mathscr{P} is defined inductively by setting $\mu_{\mathscr{P}}(\mathbf{n}) := 1$ if $\mathbf{n} \in B(\mathscr{P})$ and

$$\mu_{\mathscr{P}}(\mathbf{n}) := 1 - \sum_{\mathbf{w} \in (\mathbf{n} + \mathbb{Z}_{>0}^p) \cap I(\mathscr{P})} \mu_{\mathscr{P}}(\mathbf{w})$$

if $\mathbf{n} \in I(\mathscr{P}) \setminus B(\mathscr{P})$. When $\mathbf{n} \notin I(\mathscr{P})$, we set $\mu_{\mathscr{P}}(\mathbf{n}) := 0$. Then the *Möbius support* of \mathscr{P} is defined as

$$\text{μ-supp}(\mathscr{P}) \,:=\, \big\{ \boldsymbol{n} \in \mathbb{N}^p \,\mid\, \mu_{\mathscr{P}}(\boldsymbol{n}) \neq 0 \big\}.$$

Consider the minimal \mathbb{Z}^p -graded free R-resolution

$$\mathbb{F}_{\bullet} \colon \quad \cdots \to \, \mathsf{F}_{\mathsf{i}} = \bigoplus_{\mathsf{j}=1}^{\beta_{\mathsf{i}}} \mathsf{R}(-\mathbf{b}_{\mathsf{i},\mathsf{j}}) \, \to \cdots \to \, \mathsf{F}_{\mathsf{0}} \, \to \, \mathsf{I}_{\mathscr{P}} \, \to 0$$

of $I_{\mathscr{P}}$, where each $\mathbf{b}_{i,j} = (b_{i,j,1}, \dots, b_{i,j,p}) \in \mathbb{N}^p$. The i-th homological shift ideal of $I_{\mathscr{P}}$ is given by

$$HS_{\mathfrak{i}}(I_{\mathscr{P}}) \, := \, \left(\boldsymbol{x}^{\boldsymbol{b}_{\mathfrak{i},\mathfrak{j}}} \, | \, 1 \leqslant \mathfrak{j} \leqslant \beta_{\mathfrak{i}} \right) \, \subset \, R.$$

Notice that the equality $HS_0(I_{\mathscr{P}}) = I_{\mathscr{P}}$ holds.

Definition 2.2. The K-polynomial of $I_{\mathscr{P}}$ is defined as

$$\mathcal{K}(I_{\mathscr{D}};t_1,\ldots,t_p) := \sum_{i\geq 0} (-1)^i \sum_{j=1}^{\beta_i} \boldsymbol{t}^{\boldsymbol{b}_{i,j}} \in \mathbb{Z}[t_1,\ldots,t_p]$$

(see [MS05], [KM05]).

Remark 2.3. By an abuse of notation, we also denote by \mathscr{P} the associated base discrete polymatroid (i.e., the lattice points in $B(\mathscr{P}) \cap \mathbb{N}^p$). Being a base discrete polymatroid is equivalent to being an *M-convex set* in the sense of Murota [Mur03].

We shall need the following "dual version" of the aforementioned polymatroidal ideal.

Definition 2.4. The *dual polymatroidal ideal* $J_{\mathscr{P}} \subset S$ of \mathscr{P} with respect to the cage **m** is given by

$$J_{\mathscr{P}} := \bigcap_{\mathbf{n} \in B(\mathscr{P}) \cap \mathbb{N}^p} \mathfrak{p}_{\mathbf{m} - \mathbf{n}} = \bigcap_{\mathbf{n} \in B(\mathscr{P}) \cap \mathbb{N}^p} \left(x_{i,j} \mid 1 \leqslant i \leqslant p \text{ and } 0 \leqslant j < m_i - n_i \right).$$

The polymatroidal multiprojective variety of \mathscr{P} with respect to the cage $\mathbf{m} = (\mathfrak{m}_1, \dots, \mathfrak{m}_p)$ is given by

$$Y_\mathscr{P} \,:=\, V(J_\mathscr{P}) \,\subset\, \mathbb{P} = \mathbb{P}^{m_1}_{\Bbbk} \times_{\Bbbk} \dots \times_{\Bbbk} \mathbb{P}^{m_p}_{\Bbbk}.$$

Remark 2.5 (\mathbb{k} infinite). Our motivation to consider the multiprojective variety $Y_{\mathscr{P}} \subset \mathbb{P}$ comes from the following algebro-geometric ideas that are available in the realizable case. If \mathscr{P} is realizable (i.e., linear over \mathbb{k}), then we can find a *multiplicity-free* subvariety $X_{\mathscr{P}} \subset \mathbb{P}$ such that the support of its multidegrees is given by \mathscr{P} (see [CCRMM22, Proposition 7.15]). Then a remarkable result of Brion [Bri03] yields a flat degeneration of $X_{\mathscr{P}}$ to $Y_{\mathscr{P}}$. This means that the multigraded generic initial ideal of the prime associated to $X_{\mathscr{P}}$ is square-free and coincides with $J_{\mathscr{P}}$ (see [CCRC23, Theorem D]).

Remark 2.6. We say that the support of a polynomial $f(t_1,...,t_p) \in \mathbb{R}[t_1,...,t_p]$ is a *generalized polymatroid* if the support of the homogeneous polynomial $t_0^{\deg(f)}f(\frac{t_1}{t_0},...,\frac{t_p}{t_0}) \in \mathbb{R}[t_0,t_1,...,t_p]$ is a (base discrete) polymatroid.

Remark 2.7. When \mathscr{P} is a matroid, $J_{\mathscr{P}}$ is the "matroid ideal" studied in [NPS02].

Remark 2.8. The set $\mathscr{P}^{\vee} := \mathbf{m} - \mathscr{P} = \{\mathbf{m} - \mathbf{n} \mid \mathbf{n} \in \mathscr{P}\}$ is also a polymatroid. We call it the *dual polymatroid* of \mathscr{P} with respect to the cage \mathbf{m} . The rank function of the dual polymatroid \mathscr{P}^{\vee} is given by

$$\text{rk}_{\mathscr{P}^{\vee}}(J) \,:=\, \sum_{j\in J} m_j + \text{rk}_{\mathscr{P}}([p]\setminus J) - \text{rk}_{\mathscr{P}}([p]) \quad \text{ for all } J\subseteq [p]$$

(see [Sch03, §44.6f]). Moreover, we have $\mathscr{P}^{\vee\vee} = \mathscr{P}$.

Remark 2.9. The Chow ring of \mathbb{P} and the Grothendieck ring of coherent sheaves on \mathbb{P} are given by

$$A^*(\mathbb{P}) \,\cong\, \frac{\mathbb{Z}[t_1,\ldots,t_p]}{\left(t_1^{\mathfrak{m}_1+1},\ldots,t_p^{\mathfrak{m}_p+1}\right)} \quad \text{and} \quad K(\mathbb{P}) \,\cong\, \frac{\mathbb{Z}[t_1,\ldots,t_p]}{\left((1-t_1)^{\mathfrak{m}_1+1},\ldots,(1-t_p)^{\mathfrak{m}_p+1}\right)}.$$

For any coherent sheaf \mathcal{F} on \mathbb{P} , we can write

$$\left[\mathfrak{F}\right] = \sum_{\boldsymbol{n} \in \mathbb{N}^p \text{ and } |\boldsymbol{n}| \leqslant \text{dim}(\text{Supp}(\mathfrak{F}))} c_{\boldsymbol{n}}\left(\mathfrak{F}\right) \left[\mathfrak{O}_{\mathbb{P}^{\mathfrak{n}_1}_{\Bbbk} \times_{\Bbbk} \cdots \times_{\Bbbk} \mathbb{P}^{\mathfrak{n}_p}_{\Bbbk}}\right] \in \ \mathsf{K}(\mathbb{P}).$$

For any closed subscheme $X \subset \mathbb{P}$, we set $c_n(X) := c_n(\mathcal{O}_X)$. Since by construction $\dim(Y_{\mathscr{P}}) = \mathrm{rk}(\mathscr{P})$, we can write the class $[\mathcal{O}_{Y_{\mathscr{P}}}] \in K(\mathbb{P})$ as

$$\left[\mathfrak{O}_{Y_\mathscr{P}} \right] \, = \, \sum_{\boldsymbol{n} \in \mathbb{N}^p \text{ and } |\boldsymbol{n}| \leqslant \operatorname{rk}(\mathscr{P})} c_{\boldsymbol{n}}(Y_\mathscr{P}) \left[\mathfrak{O}_{\mathbb{P}^{n_1}_{\Bbbk} \times_{\Bbbk} \cdots \times_{\Bbbk} \mathbb{P}^{n_p}_{\Bbbk}} \right] \, \in \, \mathsf{K}(\mathbb{P}).$$

Under the above isomorphism describing $K(\mathbb{P})$, we can also write

$$[\mathfrak{O}_{Y_\mathscr{P}}] = \sum_{\mathbf{n} \in \mathbb{N}^p \text{ and } |\mathbf{n}| \leq \operatorname{rk}(\mathscr{P})} c_{\mathbf{n}}(Y_\mathscr{P}) (1 - t_1)^{m_1 - n_1} \cdots (1 - t_p)^{m_p - n_p} \in \mathsf{K}(\mathbb{P}).$$

Then we obtain

$$[Y_{\mathscr{P}}] = \sum_{\mathbf{n} \in \mathbb{N}^p \text{ and } |\mathbf{n}| = \mathrm{rk}(\mathscr{P})} c_{\mathbf{n}}(Y_{\mathscr{P}}) t_1^{\mathfrak{m}_1 - \mathfrak{n}_1} \cdots t_p^{\mathfrak{m}_p - \mathfrak{n}_p} \in A^*(\mathbb{P})$$

 $(\text{i.e., when } |n| = \text{dim}(Y_\mathscr{P}), \text{ the constants } c_n(Y_\mathscr{P}) = \text{deg}_\mathbb{P}^n(Y_\mathscr{P}) \text{ encode the multidegrees of } Y_\mathscr{P} \text{)}.$

The next technical proposition relates the previous invariants we have seen.

Proposition 2.10. *Under the above notation, the following statements hold:*

- (i) $\mu_{\mathscr{P}}(\mathbf{n}) = c_{\mathbf{n}}(Y_{\mathscr{P}})$ for all $\mathbf{n} \in \mathbb{N}^p$.
- (ii) In terms of the dual polymatroid $\mathscr{P}^{\vee} = \mathbf{m} \mathscr{P}$, we have the equality

$$\mathfrak{K}(I_{\mathscr{P}^\vee};\boldsymbol{t}) = \sum_{\boldsymbol{n}\in\mathbb{N}^p} c_{\boldsymbol{n}}(Y_\mathscr{P}) \, t_1^{m_1-n_1} \cdots t_p^{m_p-n_p}.$$

Proof. (i) This part follows from [Knu09] (see also [CCRMM22]).

(ii) Consider the K-polynomial $\mathcal{K}(S/J_{\mathscr{P}};\mathbf{t})$ of $S/J_{\mathscr{P}}$. Since each minimal prime of $J_{\mathscr{P}}$ is of the form $\mathfrak{p}_{\mathbf{m}-\mathbf{n}}$ (a Borel-fixed prime in a multigraded setting), one can show that the K-polynomial $\mathcal{K}(S/J_{\mathscr{P}};\mathbf{t}) \in \mathbb{Z}[t_1,\ldots,t_p]$ and the class $[\mathfrak{O}_{Y_{\mathscr{P}}}] \in K(\mathbb{P})$ determine one another; that is, we have the equality

$$\mathcal{K}(S/J_{\mathscr{P}};\boldsymbol{t}) \, = \, \sum_{\boldsymbol{n} \in \mathbb{N}^p} c_{\boldsymbol{n}}(Y_{\mathscr{P}}) \, (1-t_1)^{m_1-n_1} \cdots (1-t_p)^{m_p-n_p} \, \in \, \mathbb{Z}[t_1,\ldots,t_p]$$

(see [CCRMM22, §4]). The Alexander dual of $J_{\mathscr{P}} \subset S$ is the monomial ideal $K_{\mathscr{P}} \subset S$ given by

$$\mathsf{K}_\mathscr{P} := \left(\mathbf{x}_{\mathbf{m}-\mathbf{n}} = \prod_{1 \leqslant i \leqslant p, 0 \leqslant j < m_i - n_i} \mathsf{x}_{i,j} \mid \mathbf{n} \in \mathsf{B}(\mathscr{P}) \cap \mathbb{N}^p \right)$$

(see [HH11, Corollary 1.5.5]). By [MS05, Theorem 5.14], we have the equality

$$\mathfrak{K}(K_{\mathscr{P}};\boldsymbol{t}) \,=\, \mathfrak{K}(S/J_{\mathscr{P}};\boldsymbol{1}-\boldsymbol{t}) \,=\, \sum_{\boldsymbol{n}\in\mathbb{N}^p} c_{\boldsymbol{n}}(Y_{\mathscr{P}})\, t_1^{m_1-n_1}\cdots t_p^{m_p-n_p} \,\in\, \mathbb{Z}[t_1,\ldots,t_p].$$

Notice that $K_\mathscr{P}$ can be seen naturally as the polarization of $I_{\mathscr{P}^\vee}$ by mapping the monomial $\mathbf{x}^{\mathbf{m}-\mathbf{n}} = x_1^{m_1-n_1}\cdots x_p^{m_p-n_p}$ in R to the monomial $\mathbf{x}_{\mathbf{m}-\mathbf{n}} = \prod_{1\leqslant i\leqslant p, 0\leqslant j< m_i-n_i} x_{i,j}$ in S. Finally, by standard

properties of polarization (see [HH11, §1.6]), it follows that $\mathcal{K}(I_{\mathscr{D}^{\vee}};\mathbf{t}) = \mathcal{K}(K_{\mathscr{P}};\mathbf{t})$. This concludes the proof of the proposition.

We now recall the notion of *valuative functions* on polymatroids.

Definition 2.11. The *indicator function* $\mathbb{1}_{\mathscr{P}} \colon \mathbb{R}^p \to \mathbb{Z}$ of a polymatroid \mathscr{P} is the function given by

$$\mathbb{1}_{\mathscr{P}}(\mathbf{v}) := \begin{cases} 1 & \text{if } \mathbf{v} \in \mathsf{B}(\mathscr{P}) \\ 0 & \text{otherwise.} \end{cases}$$

The *valuative group* of polymatroids on [p] with cage $\mathbf{m}=(m_1,\ldots,m_p)$, denoted $Val_{\mathbf{m}}$, is the subgroup of $Hom_{Sets}(\mathbb{R}^p,\mathbb{Z})$ generated by all the indicator functions $\mathbb{1}_\mathscr{P}$ for \mathscr{P} a polymatroid on [p] with cage \mathbf{m} . A function $f\colon \mathbb{Pol}_{\mathbf{m}}\to G$ from the set $\mathbb{Pol}_{\mathbf{m}}$ of polymatroids with cage \mathbf{m} to an Abelian group G is said to be *valuative* if it factors through $Val_{\mathbf{m}}$. This means that, for all $\mathscr{P}_1,\ldots,\mathscr{P}_k\in\mathbb{Pol}_{\mathbf{m}}$ and all $\alpha_1,\ldots,\alpha_k\in\mathbb{Z}$, if $\sum_{i=1}^k\alpha_i\mathbb{1}_{\mathscr{P}_i}=0\in Hom_{Sets}(\mathbb{R}^p,\mathbb{Z})$, then $\sum_{i=1}^k\alpha_if(\mathscr{P}_i)=0\in G$.

Remark 2.12. From [DF10] or [EL24, Remark 3.16], the valuative group Val_m is generated by the indicator functions of realizable polymatroids over \mathbb{C} . Therefore if two valuative functions $f,g: \mathbb{Pol}_m \to G$ agree on realizable polymatroids, then they are equal.

Our approach is based on defining the following polynomial and showing that it is *valuative*. We call this polynomial the *cave polynomial* because it is motivated by the combinatorial notion of *caves* introduced in [CCRMM22].

Definition 2.13. The *cave polynomial* of the polymatroid \mathcal{P} is given by

$$\text{cave}_{\mathscr{P}}(t_1,\ldots,t_p) := \sum_{\mathbf{n} \in \mathbb{N}^p \text{ and } |\mathbf{n}| = \text{rk}(\mathscr{P})} \mathbb{1}_{\mathscr{P}}(\mathbf{n}) \prod_{i=1}^{p-1} \left(1 - \max_{i < j} \left\{ \mathbb{1}_{\mathscr{P}}\left(\mathbf{n} - \mathbf{e}_i + \mathbf{e}_j\right) \right\} t_i^{-1} \right) \mathbf{t}^{\mathbf{n}}.$$

Notice that $cave_{\mathscr{P}}(t_1,...,t_p)$ is an honest polynomial in $\mathbb{Z}[t_1,...,t_p]$ and not a Laurent polynomial with possibly negative exponents of the variables t_i .

Remark 2.14. Write $\operatorname{cave}_{\mathscr{P}}(\mathbf{t}) = \sum_{|\mathbf{n}| \leqslant \operatorname{rk}(\mathscr{P})} a_{\mathbf{n}}(\mathscr{P}) \mathbf{t}^{\mathbf{n}}$. By ordering the points in $B(\mathscr{P}) \cap \mathbb{N}^p$ with respect to the lexicographic order (with $1 < 2 < \dots < p$), we obtain a shelling of the facets of the simplicial complex $\Delta(J_{\mathscr{P}})$ associated to $J_{\mathscr{P}}$ (see [CCRMM22, proof of Lemma 6.8]). Then by [CCRMM22, Proposition 4.6], we obtain that the coefficients of the cave polynomial $\operatorname{cave}_{\mathscr{P}}(\mathbf{t})$ describe the class $[\mathfrak{O}_{Y_{\mathscr{P}}}] \in K(\mathbb{P})$; that is,

$$[\mathfrak{O}_{Y_\mathscr{P}}] = \sum_{\mathbf{n} \in \mathbb{N}^p \text{ and } |\mathbf{n}| \leqslant \mathrm{rk}(\mathscr{P})} \alpha_{\mathbf{n}}(\mathscr{P}) \left[\mathfrak{O}_{\mathbb{P}^{n_1}_{\Bbbk} \times_{\Bbbk} \cdots \times_{\Bbbk} \mathbb{P}^{n_p}_{\Bbbk}} \right].$$

Hence we have the equalities

$$a_{\mathbf{n}}(\mathscr{P}) = c_{\mathbf{n}}(Y_{\mathscr{P}}) = \mu_{\mathscr{P}}(\mathbf{n})$$

(see Remark 2.9 and Proposition 2.10). As a consequence, we can write

$$cave_{\mathscr{P}}(t_1,\ldots,t_p) \, = \, \sum_{\boldsymbol{n}\in\mathbb{N}^p} \, \mu_{\mathscr{P}}(\boldsymbol{n}) \, t_1^{n_1}\cdots t_p^{n_p}.$$

By symmetry, since we can choose any lexicographic order on [p], we get

$$\text{cave}_{\mathscr{P}}(t_1, \dots, t_p) \, := \, \sum_{\boldsymbol{n} \in \mathbb{N}^p \text{ and } |\boldsymbol{n}| = rk(\mathscr{P})} \mathbb{1}_{\mathscr{P}}(\boldsymbol{n}) \prod_{\mathfrak{i} = 1}^{\mathfrak{p} - 1} \left(1 - \max_{\mathfrak{i} < \mathfrak{j}} \left\{ \mathbb{1}_{\mathscr{P}} \left(\boldsymbol{n} - \boldsymbol{e}_{\pi(\mathfrak{i})} + \boldsymbol{e}_{\pi(\mathfrak{j})} \right) \right\} t_{\pi(\mathfrak{i})}^{-1} \right) \boldsymbol{t}^{\boldsymbol{n}}$$

for any permutation $\pi \in \mathfrak{S}_p$ on [p]. Let $\mathfrak{b} \colon \mathbb{Q}[t_1, \ldots, t_p] \to \mathbb{Q}[t_1, \ldots, t_p]$ be the \mathbb{Q} -linear map sending $t_1^{n_1} \cdots t_p^{n_p}$ to $\binom{t_1+n_1}{n_1} \cdots \binom{t_p+n_p}{n_p}$. The cave polynomial cave $\mathscr{P}(t_1, \ldots, t_p)$ satisfies the equation

(1)
$$\chi(Y_{\mathscr{P}}, \mathcal{O}_{Y_{\mathscr{P}}}(\nu_1, ..., \nu_p)) = (\mathfrak{b}(\operatorname{cave}_{\mathscr{P}}))(\nu_1, ..., \nu_p)$$

for all $(\nu_1, ..., \nu_p) \in \mathbb{Z}^p$.

We are also interested in the K-ring of a matroid and in the notion of multisymmetric lift.

Definition 2.15 ([LLPP24]; see also [EL23, §2.2]). Let \mathcal{M} be a matroid on the ground set E. Let $K(\mathcal{M})$ be the *augmented* K-*ring* of \mathcal{M} , as introduced in [LLPP24]. We are interested in the following features of $K(\mathcal{M})$:

- (i) It is endowed with an *Euler characteristic map* $\chi(\mathcal{M}, -)$: $K(\mathcal{M}) \to \mathbb{Z}$.
- (ii) Each nonempty subset $S \subseteq E$ defines an element $[\mathcal{L}_S] \in K(\mathcal{M})$.
- (iii) The elements $\{[\mathcal{L}_{\mathcal{S}}]\}_{\emptyset \subset \mathcal{S} \subset \mathcal{E}}$ generate $K(\mathcal{M})$ as a ring.
- (iv) A *line bundle* in $K(\mathcal{M})$ is a Laurent monomial in the $[\mathcal{L}_S]$.

Definition 2.16 ([EL24, EL23, CHL⁺22]). The *multisymmetric lift* of \mathscr{P} is a matroid \mathscr{M} on a ground set E which is equipped with a distinguished partition $E = S_1 \sqcup \cdots \sqcup S_p$ satisfying the following properties:

- (i) $|S_i| = m_i$ for each $1 \le i \le p$.
- (ii) $\text{rk}_{\mathscr{M}}: 2^E \to \mathbb{N}$ is preserved by the action of the product of symmetric groups $\mathfrak{S}_{\mathcal{S}_1} \times \cdots \times \mathfrak{S}_{\mathcal{S}_p}$.
- (iii) For each $J \subseteq [p]$, we have

$$\operatorname{rk}_{\mathscr{P}}(J) = \operatorname{rk}_{\mathscr{M}}\left(\bigsqcup_{j \in J} S_{j}\right).$$

The multisymmetric lift \mathcal{M} always exists (see [CHL⁺22, Theorem 2.11]). We say that \mathcal{M} is a matroid on a ground set E with subsets $S_1, \ldots, S_p \subseteq E$ such that the *restriction polymatroid* is \mathcal{P} .

Let \mathcal{M} be a matroid on a ground set E with subsets $S_1, \dots, S_p \subseteq E$ such that the restriction polymatroid is \mathcal{P} . By [EL23, Theorem 1.2], the *Snapper polynomial* of $\mathcal{L}_{S_1}, \dots, \mathcal{L}_{S_p}$ satisfies the following equality

(2)
$$\chi\left(\mathcal{M},\mathcal{L}_{S_1}^{\otimes v_1} \otimes \cdots \otimes \mathcal{L}_{S_p}^{\otimes v_p}\right) = \chi(Y_{\mathscr{P}}, \mathcal{O}_{Y_{\mathscr{P}}}(\mathbf{v}))$$

for all $\mathbf{v} = (v_1, \dots, v_p) \in \mathbb{Z}^p$. Since the right-hand side of (2) depends only on \mathscr{P} , we can make the following definition.

Definition 2.17. The *Snapper polynomial* of the polymatroid \mathcal{P} is given by

$$Snapp_{\mathscr{D}}(t_1,...,t_p) \,:=\, \chi \left(\mathscr{M}, \mathcal{L}_{\$_1}^{\otimes t_1} \otimes \cdots \otimes \mathcal{L}_{\$_p}^{\otimes t_p} \right) \,\in\, \mathbb{N}[t_1,...,t_p].$$

We have the following explicit relation between the Snapper polynomial and the cave polynomial

(3)
$$\operatorname{Snapp}_{\mathscr{P}}(\mathsf{t}_1,\ldots,\mathsf{t}_{\mathsf{p}}) = \mathfrak{b}(\operatorname{cave}_{\mathscr{P}}(\mathsf{t}_1,\ldots,\mathsf{t}_{\mathsf{p}})).$$

Indeed, the equality follows from (1) and (2).

The next proposition is invaluable for our approach.

Proposition 2.18. The function cave: $\mathbb{Pol}_{\mathbf{m}} \to \mathbb{Z}[t_1, ..., t_p]$, $\mathscr{P} \mapsto \text{cave}_{\mathscr{P}}(t_1, ..., t_p)$ assigning the cave polynomial to a polymatroid is valuative.

Proof. Due to Remark 2.8, Remark 2.14, and Proposition 2.10, it suffices to show the valuativity of the function assigning to each polymatroid \mathscr{P} the \mathbb{N}^p -graded Hilbert function of the polymatroidal ideal $I_{\mathscr{P}} \subset R$. For all $\mathbf{n} \in \mathbb{N}^p$, we have that $\dim_{\mathbb{R}}([I_{\mathscr{P}}]_{\mathbf{n}}) \neq 0$ if and only if \mathbf{n} belongs to the region

$$\bigcup_{\mathbf{w}\in B(\mathscr{P})\cap \mathbb{N}^p} \left(\mathbf{w} + \mathbb{Z}_{>0}^p\right).$$

Equivalently, we obtain

$$\dim_{\Bbbk}(\left[I_{\mathscr{P}}\right]_{\boldsymbol{n}}) \,=\, \mathfrak{i}_{\boldsymbol{n}+\mathbb{R}^p_{\leqslant 0}}(\mathscr{P}) \,:=\, \begin{cases} 1 & \text{if } B(\mathscr{P}) \cap \left(\boldsymbol{n}+\mathbb{R}^p_{\leqslant 0}\right) \neq \varnothing \\ 0 & \text{otherwise}. \end{cases}$$

Finally, from [AFR10, Corollary 4.3], we know that the function $\mathfrak{i}_{\mathbf{n}+\mathbb{R}^p_{\leqslant 0}}\colon \mathbb{Pol}_{\mathbf{m}}\to \mathbb{Z}$ is valuative. (The statement of [AFR10, Corollary 4.3] is for matroids, but the same proof holds for polymatroids.)

Lemma 2.19. For any $\mathbf{b} \in \mathbb{N}^p$, the set $\mathscr{P}' = \mathscr{P} - \mathbf{b} = \{\mathbf{n} - \mathbf{b} \mid \mathbf{n} \in \mathscr{P} \text{ and } \mathbf{n} \geqslant \mathbf{b}\}$ and the truncation $\mathscr{P}_{\mathbf{b}} = \{\mathbf{n} \in \mathscr{P} \mid \mathbf{n} \geqslant \mathbf{b}\}$ are both (base discrete) polymatroids.

Proof. Write $F_{\mathscr{P}}(\mathbf{t}) = \sum_{\mathbf{n} \in \mathscr{P}} \frac{\mathbf{t}^{\mathbf{n}}}{\mathbf{n}!}$ for the generating function of $\mathscr{P} \subset \mathbb{N}^p$. By [BH20, Theorem 3.10], the polynomial $F_{\mathscr{P}}$ is Lorentzian. Now, by [RSW23, Proposition 3.3], the generating functions $F_{\mathscr{P}'}$ and $F_{\mathscr{P}_b}$ are also Lorentzian. Another application of [BH20, Theorem 3.10] yields that \mathscr{P}' and \mathscr{P}_b are M-convex sets. Hence, they are both (base discrete) polymatroids.

Lemma 2.20. Let $i \in [p]$ and consider $\mathscr{P}' = \mathscr{P} - \mathbf{e}_i$ and $\mathscr{P}_{\mathbf{e}_i}$. Then, for all $\mathbf{n} \geqslant \mathbf{e}_i$, we have the equalities

$$c_{\mathbf{n}}(Y_{\mathscr{P}_{\mathbf{e}_{i}}}) = c_{\mathbf{n}-\mathbf{e}_{i}}(Y_{\mathscr{P}'}) = c_{\mathbf{n}}(Y_{\mathscr{P}}).$$

Proof. The equalities $c_n(Y_{\mathscr{P}_{e_i}}) = a_n(\mathscr{P}_{e_i}) = a_{n-e_i}(\mathscr{P}') = c_{n-e_i}(Y_{\mathscr{P}'})$ follow from Remark 2.14. We prove the other equality. Consider the functions $f,g\colon \mathbb{Pol}_m\to\mathbb{Z}$ given by $f(\mathscr{P}):=c_n(Y_{\mathscr{P}})$ and $g(\mathscr{P}):=c_{n-e_i}(Y_{\mathscr{P}-e_i})$. By Proposition 2.18, both functions are valuative. Thus, due to Remark 2.12, it suffices to show that f and g agree on realizable polymatroids.

Let $\mathscr P$ be a realizable polymatroid over $\mathbb C$. Due to [CCRMM22, Proposition 7.15] and Remark 2.5, we can find a multiplicity-free $X_\mathscr P \subset \mathbb P_\mathbb C = \mathbb P_\mathbb C^{m_1} \times \cdots \times \mathbb P_\mathbb C^{m_p}$ such that $f(\mathscr P) = c_{\mathbf n}(Y_\mathscr P) = c_{\mathbf n}(X_\mathscr P)$. Let $H \subset \mathbb P_\mathbb C$ be the pullback of a general hyperplane in $\mathbb P_\mathbb C^{m_i}$. Then, by Bertini's theorem, we have that $X_\mathscr P \cap H$ is also a multiplicity-free variety and that $c_{\mathbf n-\mathbf e_i}(X_\mathscr P \cap H) = c_{\mathbf n}(X_\mathscr P)$. Again, applying [CCRMM22, Proposition 7.15] to the polymatroid $\mathscr P - \mathbf e_i$, we obtain $g(\mathscr P) = c_{\mathbf n-\mathbf e_i}(Y_{\mathscr P-\mathbf e_i}) = c_{\mathbf n-\mathbf e_i}(X_\mathscr P \cap H)$. So the proof is complete.

We are now ready to prove our main results.

Proof of Theorem A. (i) Set $\mathscr{C} := \mu\text{-supp}(\mathscr{P}) = \{\mathbf{n} \in \mathbb{N}^p \mid c_{\mathbf{n}}(\mathscr{P}) \neq 0\} = \text{supp}(\text{cave}_{\mathscr{P}}(t_1, \dots, t_p))$ (see Remark 2.14 and Proposition 2.10). We show that \mathscr{C} is a cave (see [CCRMM22, §5]) and so it is a generalized polymatroid by [CCRMM22, Theorem 5.18]. Let $\mathbf{b} \in \mathbb{N}^p$ and consider $\mathscr{A} := \mathscr{C}_{\mathbf{b}}$, the \mathbf{b} -truncation of \mathscr{C} . By Lemma 2.19, we have that $\mathscr{P}_{\mathbf{b}}$ is also a polymatroid. Iteratively applying Lemma 2.20, we

get $c_{\mathbf{n}}(\mathscr{P}) = c_{\mathbf{n}}(\mathscr{P}_{\mathbf{b}}) = c_{\mathbf{n}-\mathbf{b}}(\mathscr{P} - \mathbf{b})$ for all $\mathbf{n} \geqslant \mathbf{b}$. Thus $\mathscr{A} = \text{supp}\left(\text{cave}_{\mathscr{P} - \mathbf{b}}(t_1, \dots, t_p)\right) + \mathbf{b}$. We now check the conditions of [CCRMM22, Definition 5.8]:

- Part (a) holds because we already know that $\mathscr{A}^{top} = \mathscr{P}_b$ is a polymatroid.
- Part (b) holds by construction since the cave polynomial mimics the notion of stalactites.
- Part (c) holds by induction on the rank of \mathscr{P} because the rank of $\mathscr{P} \mathbf{b}$ is strictly smaller than the rank of \mathscr{P} when $\mathbf{b} \neq \mathbf{0}$. The base case is clear since $\operatorname{cave}_{\mathscr{P}}(t_1,\ldots,t_p)=1$ when $\mathscr{P}=\{\mathbf{0}\}$ is the polymatroid of rank zero.

Therefore, the support of the cave polynomial cave $\mathscr{D}(t_1,...,t_p)$ is a cave, and so we are done with the proof of this part.

- (ii) This part follows from Remark 2.14 and part (i).
- (iii) The equality

$$\mathfrak{K}(I_{\mathscr{P}};t_1,\ldots,t_p) \,=\, t_1^{\mathfrak{m}_1}\cdots t_p^{\mathfrak{m}_p} \; \text{cave}_{\mathscr{P}^\vee}\left(t_1^{-1},\ldots,t_p^{-1}\right)$$

follows from Proposition 2.10 and Remark 2.14. By part (i), we already know that the support of $\operatorname{cave}_{\mathscr{P}^\vee}(t)$ is a generalized polymatroid. This implies that the support of $\operatorname{K}(I_{\mathscr{P}};t)=t^m\operatorname{cave}_{\mathscr{P}^\vee}(t^{-1})$ is also a generalized polymatroid. Recall that polymatroidal ideals have a linear resolution (see [HH11, Theorem 12.6.2]). Hence $\operatorname{HS}_{\mathfrak{i}}(I_{\mathscr{P}})$ is generated by the monomials $\mathbf{x}^n=x_1^{n_1}\cdots x_p^{n_p}$ of total degree $\operatorname{rk}(\mathscr{P})+\mathfrak{i}$ such that $\mathbf{t}^n=t_1^{n_1}\cdots t_p^{n_p}$ belongs to the support of $\operatorname{K}(I_{\mathscr{P}};t)$. This implies the equality

$$\mathrm{HS}_{\mathfrak{i}}\left(\mathrm{I}_{\mathscr{P}}\right) \,=\, \left(\mathbf{x}^{\mathbf{n}} \,\mid\, \mathbf{n} \in \mathbb{N}^{\mathbf{p}},\, |\mathbf{n}| = \mathrm{rk}(\mathscr{P}) + \mathfrak{i} \,\,\mathrm{and}\,\,\, \mu_{\mathscr{P}^{\vee}}(\mathbf{m} - \mathbf{n}) \neq 0 \right)$$

and shows that Conjecture 1.1 holds.

We finish the paper with the following example.

Example 2.21. We illustrate Theorem A in an explicit example. To this end, consider the polymatroid \mathscr{P} described in [PP23, Section 7]. It is a polymatroid on the set $[3] = \{1,2,3\}$ with cage (2,2,4) and rank function $\operatorname{rk}_{\mathscr{P}} \colon 2^{[3]} \to \mathbb{N}$ given by

$$rk(\emptyset) = 0$$
, $rk(\{1\}) = rk(\{2\}) = 2$, $rk(\{3\}) = rk(\{1,2\}) = 4$, $rk(\{1,3\}) = rk(\{2,3\}) = rk(\{1,2,3\}) = 5$.

The base polytope $B(\mathscr{P})$ and the independence polytope $I(\mathscr{P})$ are shown in Figure 1. The lattice points in the base polytope are given by

$$B(\mathscr{P}) \cap \mathbb{N}^3 = \{(0,2,3), (2,0,3), (1,2,2), (2,1,2), (2,2,1), (1,1,3), (1,0,4), (0,1,4)\},\$$

and thus the polymatroidal ideal $I_{\mathscr{P}} \subset \mathbb{k}[x_1, x_2, x_3]$ is given by

$$I_{\mathscr{P}} = \left(x_2^2 x_3^3, x_1^2 x_3^3, x_1 x_2^2 x_3^2, x_1^2 x_2 x_3^2, x_1^2 x_2^2 x_3, x_1 x_2 x_3^3, x_1 x_3^4, x_2 x_3^4\right).$$

The K-polynomial of $I_{\mathscr{P}}$ is given by

$$\mathcal{K}(I_{\mathscr{P}};t_1,t_2,t_3) = t_1^2 t_2^2 t_3^3 + t_1^2 t_2 t_3^4 + t_1 t_2^2 t_3^4$$

$$-2 t_1^2 t_2^2 t_3^2 - 2 t_1^2 t_2 t_3^3 - 2 t_1 t_2^2 t_3^3 - t_1^2 t_3^4 - 2 t_1 t_2 t_3^4 - t_2^2 t_3^4$$

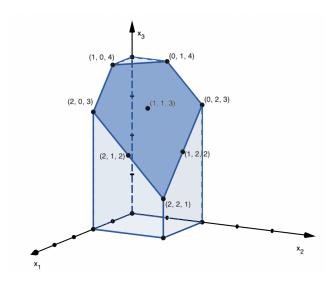


FIGURE 1. Base and independence polytopes of \mathcal{P} .

$$+ \, t_1^2 t_2^2 t_3 + t_1^2 t_2 t_3^2 + t_1 t_2^2 t_3^2 + t_1^2 t_3^3 + t_1 t_2 t_3^3 + t_2^2 t_3^3 + t_1 t_3^4 + t_2 t_3^4.$$

The dual polymatroid \mathscr{P}^{\vee} of \mathscr{P} , with respect to the cage (2,2,4), is described by the lattice points

$$\mathsf{B}(\mathscr{P}^{\vee})\cap \mathbb{N}^3 \,=\, \big\{(2,0,1), (0,2,1), (1,0,2), (0,1,2), (0,0,3), (1,1,1), (1,2,0), (2,1,0)\big\}.$$

The cave polynomial of \mathscr{P}^{\vee} is given by

$$\begin{aligned} \text{cave}_{\mathscr{D}^{\vee}}(t_1,t_2,t_3) \ = \ t_1^2t_2 + t_1t_2^2 + t_1^2t_3 + t_1t_2t_3 + t_2^2t_3 + t_1t_3^2 + t_2t_3^2 + t_3^3 \\ -t_1^2 - 2t_1t_2 - t_2^2 - 2t_1t_3 - 2t_2t_3 - 2t_3^2 \\ +t_1 + t_2 + t_3. \end{aligned}$$

Using the SageMath [Sag25] function is_lorentzian(), we verified that the homogenization of the (sign-changed) polynomials $\mathcal{K}(I_{\mathscr{P}};t_1,t_2,t_3)$ and cave $_{\mathscr{P}^\vee}(t_1,t_2,t_3)$ are both denormalized Lorentzian polynomials.

ACKNOWLEDGMENTS

Jacob P. Matherne and Anna Shapiro received support from Simons Foundation Travel Support for Mathematicians Award MPS-TSM-00007970.

REFERENCES

[AFR10] Federico Ardila, Alex Fink, and Felipe Rincón, *Valuations for matroid polytope subdivisions*, Canad. J. Math. **62** (2010), no. 6, 1228–1245. 8

[Bay18] Shamila Bayati, Multigraded shifts of matroidal ideals, Archiv der Mathematik 111 (2018), 239–246. 1, 2

[BH20] Petter Brändén and June Huh, Lorentzian polynomials, Ann. of Math. (2) 192 (2020), no. 3, 821–891.

[Bri03] Michel Brion, *Multiplicity-free subvarieties of flag varieties*, Commutative algebra (Grenoble/Lyon, 2001), Contemp. Math., vol. 331, Amer. Math. Soc., Providence, RI, 2003, pp. 13–23. 4

[CCRC23] Alessio Caminata, Yairon Cid-Ruiz, and Aldo Conca, *Multidegrees, prime ideals, and non-standard gradings*, Adv. Math. **435** (2023), Paper No. 109361, 46. 4

- [CCRMM22] Federico Castillo, Yairon Cid-Ruiz, Fatemeh Mohammadi, and Jonathan Montaño, *K-polynomials of multiplicity-free varieties*, arXiv preprint arXiv:2212.13091 (2022). 1, 2, 4, 5, 6, 8, 9
- [CHL⁺22] Colin Crowley, June Huh, Matt Larson, Connor Simpson, and Botong Wang, *The Bergman fan of a polymatroid*, arXiv preprint arXiv:2207.08764 (2022), to appear in Transactions of the American Mathematical Society. 7
- [DF10] Harm Derksen and Alex Fink, Valuative invariants for polymatroids, Adv. Math. 225 (2010), no. 4, 1840–1892. 6
- [EL23] Christopher Eur and Matt Larson, *K-theoretic positivity for matroids*, arXiv preprint arXiv:2311.11996 (2023), to appear in Journal of Algebraic Geometry. 2, 7
- [EL24] ______, Intersection theory of polymatroids, Int. Math. Res. Not. IMRN (2024), no. 5, 4207–4241. 6, 7
- [FH23] Antonino Ficarra and Jürgen Herzog, *Dirac's theorem and multigraded syzygies*, Mediterranean Journal of Mathematics **20** (2023), no. 3, 134. 2
- [Fic22] Antonino Ficarra, Homological shifts of polymatroidal ideals, arXiv preprint arXiv:2205.04163 (2022). 2
- [HH11] Jürgen Herzog and Takayuki Hibi, *Monomial ideals*, Graduate Texts in Mathematics, vol. 260, Springer-Verlag London, Ltd., London, 2011. 5, 6, 9
- [HMRZ21] Jürgen Herzog, Somayeh Moradi, Masoomeh Rahimbeigi, and Guangjun Zhu, *Homological shift ideals*, Collectanea Mathematica **72** (2021), 157–174. 1, 2
- [KM05] Allen Knutson and Ezra Miller, *Gröbner geometry of Schubert polynomials*, Annals of Mathematics **161** (2005), no. 3, 1245–1318. 4
- [Knu09] Allen Knutson, Frobenius splitting and Möbius inversion, arXiv preprint arXiv:0902.1930 (2009). 5
- [LLPP24] Matt Larson, Shiyue Li, Sam Payne, and Nicholas Proudfoot, *K-rings of wonderful varieties and matroids*, Advances in Mathematics **441** (2024), 109554. 2, 7
- [MS05] Ezra Miller and Bernd Sturmfels, *Combinatorial commutative algebra*, Graduate Texts in Mathematics, vol. 227, Springer-Verlag, New York, 2005. 4, 5
- [Mur03] Kazuo Murota, *Discrete convex analysis*, SIAM Monographs on Discrete Mathematics and Applications, Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, 2003. 4
- [NPS02] Isabella Novik, Alexander Postnikov, and Bernd Sturmfels, *Syzygies of oriented matroids*, Duke Math. J. **111** (2002), no. 2, 287–317. 4
- [PP23] Roberto Pagaria and Gian Marco Pezzoli, *Hodge theory for polymatroids*, Int. Math. Res. Not. IMRN (2023), no. 23, 20118–20168. 9
- [RSW23] Julius Ross, Hendrik Süß, and Thomas Wannerer, *Dually Lorentzian Polynomials*, arXiv e-prints (2023), arXiv:2304.08399. 8
- [Sag25] Sage Developers, Sagemath, the Sage Mathematics Software System (Version 10.6 v2.6.0), 2025, https://www.sagemath.org.10
- [Sch03] Alexander Schrijver, *Combinatorial optimization. Polyhedra and efficiency. Vol. B*, Algorithms and Combinatorics, vol. 24, Springer-Verlag, Berlin, 2003, Matroids, trees, stable sets, Chapters 39–69. 4

DEPARTMENT OF MATHEMATICS, NORTH CAROLINA STATE UNIVERSITY, RALEIGH, NC 27695, USA *Email address*: ycidrui@ncsu.edu

DEPARTMENT OF MATHEMATICS, NORTH CAROLINA STATE UNIVERSITY, RALEIGH, NC 27695, USA *Email address*: jpmather@ncsu.edu

DEPARTMENT OF MATHEMATICS, NORTH CAROLINA STATE UNIVERSITY, RALEIGH, NC 27695, USA *Email address*: arshapi4@ncsu.edu